Keywords: holomorphic function; bi-univalent function; coefficient estimates; $\lambda $-pseudo-starlike function; Sakaguchi-type function
@article{10_21136_MB_2021_0050_20,
author = {Wanas, Abbas Kareem and Frasin, Basem Aref},
title = {Initial {Maclaurin} coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with {Sakaguchi-type} functions},
journal = {Mathematica Bohemica},
pages = {201--210},
year = {2022},
volume = {147},
number = {2},
doi = {10.21136/MB.2021.0050-20},
mrnumber = {4407352},
zbl = {07547250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0050-20/}
}
TY - JOUR AU - Wanas, Abbas Kareem AU - Frasin, Basem Aref TI - Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions JO - Mathematica Bohemica PY - 2022 SP - 201 EP - 210 VL - 147 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0050-20/ DO - 10.21136/MB.2021.0050-20 LA - en ID - 10_21136_MB_2021_0050_20 ER -
%0 Journal Article %A Wanas, Abbas Kareem %A Frasin, Basem Aref %T Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions %J Mathematica Bohemica %D 2022 %P 201-210 %V 147 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0050-20/ %R 10.21136/MB.2021.0050-20 %G en %F 10_21136_MB_2021_0050_20
Wanas, Abbas Kareem; Frasin, Basem Aref. Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 201-210. doi: 10.21136/MB.2021.0050-20
[1] Adegani, E. A., Bulut, S., Zireh, A.: Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc. 55 (2018), 405-413. | DOI | MR | JFM
[2] Babalola, K. O.: On $\lambda $-pseudo-starlike functions. J. Class. Anal. 3 (2013), 137-147. | DOI | MR | JFM
[3] Brannan, D. A., Taha, T. S.: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77. | MR | JFM
[4] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). | MR | JFM
[5] Frasin, B. A.: Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), 206-211. | MR | JFM
[6] Frasin, B. A.: Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 43 (2014), 383-389. | DOI | MR | JFM
[7] Frasin, B. A., Aouf, M. K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24 (2011), 1569-1573. | DOI | MR | JFM
[8] Joshi, S., Joshi, S., Pawar, H.: On some subclasses of bi-univalent functions associated with pseudo-starlike functions. J. Egypt. Math. Soc. 24 (2016), 522-525. | DOI | MR | JFM
[9] Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions. Int. Math. Forum 7 (2012), 1495-1504. | MR | JFM
[10] Magesh, N., Bulut, S.: Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 29 (2018), 203-209. | DOI | MR | JFM
[11] Mazi, E. P., Opoola, T. O.: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions. Gen. Math. 25 (2017), 85-95.
[12] Murugusundaramoorthy, G., Magesh, N., Prameela, V.: Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. | DOI | MR | JFM
[13] Owa, S., Sekine, T., Yamakawa, R.: On Sakaguchi type functions. Appl. Math. Comput. 187 (2007), 356-361. | DOI | MR | JFM
[14] Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72-75. | DOI | MR | JFM
[15] Şeker, B.: On a new subclass of bi-univalent functions defined by using Salagean operator. Turk. J. Math. 42 (2018), 2891-2896. | DOI | MR | JFM
[16] Srivastava, H. M., Altınkaya, Ş., Yalçın, S.: Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879. | DOI | MR
[17] Srivastava, H. M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23 (2015), 242-246. | DOI | MR | JFM
[18] Srivastava, H. M., Eker, S. S., Ali, R. M.: Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015), 1839-1845. | DOI | MR | JFM
[19] Srivastava, H. M., Gaboury, S., Ghanim, F.: Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Math. 28 (2017), 693-706. | DOI | MR | JFM
[20] Srivastava, H. M., Mishra, A. K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23 (2010), 1188-1192. | DOI | MR | JFM
[21] Srivastava, H. M., Wanas, A. K.: Initial Maclaurin coefficient bounds for new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 59 (2019), 493-503. | DOI | MR | JFM
[22] Wanas, A. K., Alina, A. L.: Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions. J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages. | DOI
[23] Wanas, A. K., Majeed, A. H.: Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 19 (2019), 14-21. | MR | JFM
[24] Wanas, A. K., Yalçın, S.: Initial coefficient estimates for a new subclasses of analytic and $m$-fold symmetric bi-univalent functions. Malaya J. Mat. 7 (2019), 472-476. | DOI | MR
Cité par Sources :