Orthogonality and complementation in the lattice of subspaces of a finite vector space
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 141-153.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the lattice ${\bf L}({\bf V})$ of subspaces of an $m$-dimensional vector space ${\bf V}$ over a finite field ${\rm GF}(q)$ with a prime power $q=p^n$ together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice ${\bf L}({\bf V})$ satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when ${\bf L}({\bf V})$ is orthomodular. For $m>1$ and $p\nmid m$ we show that ${\bf L}({\bf V})$ contains a $(2^m+2)$-element (non-Boolean) orthomodular lattice as a subposet. Finally, for $q$ being a prime and $m=2$ we characterize orthomodularity of ${\bf L}({\bf V})$ by a simple condition.
DOI : 10.21136/MB.2021.0042-20
Classification : 06C05, 06C15, 12D15, 12E20, 15A03
Keywords: vector space; lattice of subspaces; finite field; orthomodular lattice; modular lattice; Boolean lattice; complementation
@article{10_21136_MB_2021_0042_20,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Orthogonality and complementation in the lattice of subspaces of a finite vector space},
     journal = {Mathematica Bohemica},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2022},
     doi = {10.21136/MB.2021.0042-20},
     mrnumber = {4407348},
     zbl = {07547246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0042-20/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Orthogonality and complementation in the lattice of subspaces of a finite vector space
JO  - Mathematica Bohemica
PY  - 2022
SP  - 141
EP  - 153
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0042-20/
DO  - 10.21136/MB.2021.0042-20
LA  - en
ID  - 10_21136_MB_2021_0042_20
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Orthogonality and complementation in the lattice of subspaces of a finite vector space
%J Mathematica Bohemica
%D 2022
%P 141-153
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0042-20/
%R 10.21136/MB.2021.0042-20
%G en
%F 10_21136_MB_2021_0042_20
Chajda, Ivan; Länger, Helmut. Orthogonality and complementation in the lattice of subspaces of a finite vector space. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 141-153. doi : 10.21136/MB.2021.0042-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0042-20/

Cité par Sources :