$L^{p}$-improving properties of certain singular measures on the Heisenberg group
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 131-140
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb {H}^{n}$ supported on the graph of the quadratic function $\varphi (y) = y^{t}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \neq 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^{\frac {(2n+2)}{(2n+1)}}(\mathbb {H}^{n})$ to $L^{2n+2}(\mathbb {H}^{n})$. We also study the type set of the measures ${\rm d}\nu _{\gamma }(y,s) = \eta (y) |y|^{-\gamma } {\rm d}\mu _{A}(y,s)$, for $0 \leq \gamma 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb {R}^{2n}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _{0}$.
DOI :
10.21136/MB.2021.0014-20
Classification :
42A38, 42B10, 43A80
Keywords: Heisenberg group; singular Borel measure; $L^{p}$-improving property
Keywords: Heisenberg group; singular Borel measure; $L^{p}$-improving property
@article{10_21136_MB_2021_0014_20,
author = {Rocha, Pablo},
title = {$L^{p}$-improving properties of certain singular measures on the {Heisenberg} group},
journal = {Mathematica Bohemica},
pages = {131--140},
publisher = {mathdoc},
volume = {147},
number = {1},
year = {2022},
doi = {10.21136/MB.2021.0014-20},
mrnumber = {4387472},
zbl = {07547245},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/}
}
TY - JOUR
AU - Rocha, Pablo
TI - $L^{p}$-improving properties of certain singular measures on the Heisenberg group
JO - Mathematica Bohemica
PY - 2022
SP - 131
EP - 140
VL - 147
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/
DO - 10.21136/MB.2021.0014-20
LA - en
ID - 10_21136_MB_2021_0014_20
ER -
%0 Journal Article
%A Rocha, Pablo
%T $L^{p}$-improving properties of certain singular measures on the Heisenberg group
%J Mathematica Bohemica
%D 2022
%P 131-140
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/
%R 10.21136/MB.2021.0014-20
%G en
%F 10_21136_MB_2021_0014_20
Rocha, Pablo. $L^{p}$-improving properties of certain singular measures on the Heisenberg group. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 131-140. doi: 10.21136/MB.2021.0014-20
Cité par Sources :