Keywords: Heisenberg group; singular Borel measure; $L^{p}$-improving property
@article{10_21136_MB_2021_0014_20,
author = {Rocha, Pablo},
title = {$L^{p}$-improving properties of certain singular measures on the {Heisenberg} group},
journal = {Mathematica Bohemica},
pages = {131--140},
year = {2022},
volume = {147},
number = {1},
doi = {10.21136/MB.2021.0014-20},
mrnumber = {4387472},
zbl = {07547245},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/}
}
TY - JOUR
AU - Rocha, Pablo
TI - $L^{p}$-improving properties of certain singular measures on the Heisenberg group
JO - Mathematica Bohemica
PY - 2022
SP - 131
EP - 140
VL - 147
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/
DO - 10.21136/MB.2021.0014-20
LA - en
ID - 10_21136_MB_2021_0014_20
ER -
%0 Journal Article
%A Rocha, Pablo
%T $L^{p}$-improving properties of certain singular measures on the Heisenberg group
%J Mathematica Bohemica
%D 2022
%P 131-140
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0014-20/
%R 10.21136/MB.2021.0014-20
%G en
%F 10_21136_MB_2021_0014_20
Rocha, Pablo. $L^{p}$-improving properties of certain singular measures on the Heisenberg group. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 131-140. doi: 10.21136/MB.2021.0014-20
[1] Carmo, M. P. do: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston (1992). | DOI | MR | JFM
[2] Gel'fand, I. M., Shilov, G. E.: Generalized Functions. Vol. I. Properties and Operations. Academic Press, New York (1964). | DOI | MR | JFM
[3] Godoy, T., Rocha, P.: $L^p-L^q$ estimates for some convolution operators with singular measures on the Heisenberg group. Colloq. Math. 132 (2013), 101-111. | DOI | MR | JFM
[4] Godoy, T., Rocha, P.: Convolution operators with singular measures of fractional type on the Heisenberg group. Stud. Math. 245 (2019), 213-228. | DOI | MR | JFM
[5] Littman, W.: $L^p-L^q$ estimates for singular integral operators arising from hyperbolic equations. Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. American Mathematical Society, Providence (1973), 479-481. | DOI | MR | JFM
[6] Oberlin, D. M.: Convolution estimates for some measures on curves. Proc. Am. Math. Soc. 99 (1987), 56-60. | DOI | MR | JFM
[7] Pan, Y.: A remark on convolution with measures supported on curves. Can. Math. Bull. 36 (1993), 245-250. | DOI | MR | JFM
[8] Ricci, F.: $L^p-L^q$ boundedness of convolution operators defined by singular measures in $\mathbb R^n$. Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 237-252 Italian. | MR | JFM
[9] Ricci, F., Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J. Funct. Anal. 86 (1989), 360-389. | DOI | MR | JFM
[10] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group. Stud. Math. 132 (1999), 179-201. | DOI | MR | JFM
[11] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group. II. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 527-543. | MR | JFM
[12] Stein, E. M., Shakarchi, R.: Complex Analysis. Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). | MR | JFM
[13] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series. Princeton University Press, Princeton (1971). | DOI | MR | JFM
Cité par Sources :