Generalized quadratic operators and perturbations
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 51-63
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.
We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.
DOI : 10.21136/MB.2021.0010-20
Classification : 47A55, 47B01, 47B99
Keywords: generalized quadratic operator; perturbation classes problem
@article{10_21136_MB_2021_0010_20,
     author = {Souilah, Khalid},
     title = {Generalized quadratic operators and perturbations},
     journal = {Mathematica Bohemica},
     pages = {51--63},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0010-20},
     mrnumber = {4387468},
     zbl = {07547241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0010-20/}
}
TY  - JOUR
AU  - Souilah, Khalid
TI  - Generalized quadratic operators and perturbations
JO  - Mathematica Bohemica
PY  - 2022
SP  - 51
EP  - 63
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0010-20/
DO  - 10.21136/MB.2021.0010-20
LA  - en
ID  - 10_21136_MB_2021_0010_20
ER  - 
%0 Journal Article
%A Souilah, Khalid
%T Generalized quadratic operators and perturbations
%J Mathematica Bohemica
%D 2022
%P 51-63
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0010-20/
%R 10.21136/MB.2021.0010-20
%G en
%F 10_21136_MB_2021_0010_20
Souilah, Khalid. Generalized quadratic operators and perturbations. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 51-63. doi: 10.21136/MB.2021.0010-20

[1] Aiena, P., González, M.: Intrinsic characterizations of perturbation classes on some Banach spaces. Arch. Math. 94 (2010), 373-381. | DOI | MR | JFM

[2] Aleksiejczyk, M., Smoktunowicz, A.: On properties of quadratic matrices. Math. Pannonica 11 (2000), 239-248. | MR | JFM

[3] Deng, C. Y.: On properties of generalized quadratic operators. Linear Algebra Appl. 432 (2010), 847-856. | DOI | MR | JFM

[4] Farebrother, R. W., Trenkler, G.: On generalized quadratic matrices. Linear Algebra Appl. 410 (2005), 244-253. | DOI | MR | JFM

[5] González, M.: The perturbation classes problem in Fredholm theory. J. Funct. Anal. 200 (2003), 65-70. | DOI | MR | JFM

[6] González, M., Martínez-Abejón, A., Pello, J.: A survey on the perturbation classes problem for semi-Fredholm and Fredholm operators. Funct. Anal. Approx. Comput. 7 (2015), 75-87. | MR | JFM

[7] Lebow, A., Schechter, M.: Semigroups of operators and measures of noncompactness. J. Funct. Anal. 7 (1971), 1-26. | DOI | MR | JFM

[8] Oudghiri, M., Souilah, K.: Linear preservers of quadratic operators. Mediterr. J. Math. 13 (2016), 4929-4938. | DOI | MR | JFM

[9] Oudghiri, M., Souilah, K.: The perturbation class of algebraic operators and applications. Ann. Funct. Anal. 9 (2018), 426-434. | DOI | MR | JFM

[10] Petik, T., Uç, M., Özdemir, H.: Generalized quadraticity of linear combination of two generalized quadratic matrices. Linear Multilinear Algebra 63 (2015), 2430-2439. | DOI | MR | JFM

[11] Uç, M., Özdemir, H., Özban, A. Y.: On the quadraticity of linear combinations of quadratic matrices. Linear Multilinear Algebra 63 (2015), 1125-1137. | DOI | MR | JFM

[12] Uç, M., Petik, T., Özdemir, H.: The generalized quadraticity of linear combinations of two commuting quadratic matrices. Linear Multilinear Algebra 64 (2016), 1696-1715. | DOI | MR | JFM

[13] Živković-Zlatanović, S. Č., Djordjević, D. S., Harte, R.: Ruston, Riesz and perturbation classes. J. Math. Anal. Appl. 389 (2012), 871-886. | DOI | MR | JFM

Cité par Sources :