Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 435-460
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathcal {A}=\{A_t \}_{t\in G}$ and $\mathcal {B}=\{B_t \}_{t\in G}$ be $C^*$-algebraic bundles over a finite group $G$. Let $C=\bigoplus _{t\in G}A_t$ and $D=\bigoplus _{t\in G}B_t$. Also, let $A=A_e$ and $B=B_e$, where $e$ is the unit element in $G$. We suppose that $C$ and $D$ are unital and $A$ and $B$ have the unit elements in $C$ and $D$, respectively. In this paper, we show that if there is an equivalence $\mathcal {A}-\mathcal {B}$-bundle over $G$ with some properties, then the unital inclusions of unital $C^*$-algebras $A\subset C$ and $B\subset D$ induced by $\mathcal {A}$ and $\mathcal {B}$ are strongly Morita equivalent. Also, we suppose that $\mathcal {A}$ and $\mathcal {B}$ are saturated and that $A' \cap C={\bf C} 1$. We show that if $A\subset C$ and $B\subset D$ are strongly Morita equivalent, then there are an automorphism $f$ of $G$ and an equivalence bundle \hbox {$\mathcal {A}-\mathcal {B}^f $}-bundle over $G$ with the above properties, where $\mathcal {B}^f$ is the $C^*$-algebraic bundle induced by $\mathcal {B}$ and $f$, which is defined by $\mathcal {B}^f =\{B_{f(t)}\}_{t\in G}$. Furthermore, we give an application.\looseness -2
DOI :
10.21136/MB.2021.0005-21
Classification :
46L05, 46L08
Keywords: $C^*$-algebraic bundle; equivalence bundle; inclusions of $C^*$-algebra; strong Morita equivalence
Keywords: $C^*$-algebraic bundle; equivalence bundle; inclusions of $C^*$-algebra; strong Morita equivalence
@article{10_21136_MB_2021_0005_21,
author = {Kodaka, Kazunori},
title = {Equivalence bundles over a finite group and strong {Morita} equivalence for unital inclusions of unital $C^*$-algebras},
journal = {Mathematica Bohemica},
pages = {435--460},
publisher = {mathdoc},
volume = {147},
number = {4},
year = {2022},
doi = {10.21136/MB.2021.0005-21},
mrnumber = {4512166},
zbl = {07655819},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/}
}
TY - JOUR AU - Kodaka, Kazunori TI - Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras JO - Mathematica Bohemica PY - 2022 SP - 435 EP - 460 VL - 147 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/ DO - 10.21136/MB.2021.0005-21 LA - en ID - 10_21136_MB_2021_0005_21 ER -
%0 Journal Article %A Kodaka, Kazunori %T Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras %J Mathematica Bohemica %D 2022 %P 435-460 %V 147 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/ %R 10.21136/MB.2021.0005-21 %G en %F 10_21136_MB_2021_0005_21
Kodaka, Kazunori. Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 435-460. doi: 10.21136/MB.2021.0005-21
Cité par Sources :