Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 435-460
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {A}=\{A_t \}_{t\in G}$ and $\mathcal {B}=\{B_t \}_{t\in G}$ be $C^*$-algebraic bundles over a finite group $G$. Let $C=\bigoplus _{t\in G}A_t$ and $D=\bigoplus _{t\in G}B_t$. Also, let $A=A_e$ and $B=B_e$, where $e$ is the unit element in $G$. We suppose that $C$ and $D$ are unital and $A$ and $B$ have the unit elements in $C$ and $D$, respectively. In this paper, we show that if there is an equivalence $\mathcal {A}-\mathcal {B}$-bundle over $G$ with some properties, then the unital inclusions of unital $C^*$-algebras $A\subset C$ and $B\subset D$ induced by $\mathcal {A}$ and $\mathcal {B}$ are strongly Morita equivalent. Also, we suppose that $\mathcal {A}$ and $\mathcal {B}$ are saturated and that $A' \cap C={\bf C} 1$. We show that if $A\subset C$ and $B\subset D$ are strongly Morita equivalent, then there are an automorphism $f$ of $G$ and an equivalence bundle \hbox {$\mathcal {A}-\mathcal {B}^f $}-bundle over $G$ with the above properties, where $\mathcal {B}^f$ is the $C^*$-algebraic bundle induced by $\mathcal {B}$ and $f$, which is defined by $\mathcal {B}^f =\{B_{f(t)}\}_{t\in G}$. Furthermore, we give an application.\looseness -2
Let $\mathcal {A}=\{A_t \}_{t\in G}$ and $\mathcal {B}=\{B_t \}_{t\in G}$ be $C^*$-algebraic bundles over a finite group $G$. Let $C=\bigoplus _{t\in G}A_t$ and $D=\bigoplus _{t\in G}B_t$. Also, let $A=A_e$ and $B=B_e$, where $e$ is the unit element in $G$. We suppose that $C$ and $D$ are unital and $A$ and $B$ have the unit elements in $C$ and $D$, respectively. In this paper, we show that if there is an equivalence $\mathcal {A}-\mathcal {B}$-bundle over $G$ with some properties, then the unital inclusions of unital $C^*$-algebras $A\subset C$ and $B\subset D$ induced by $\mathcal {A}$ and $\mathcal {B}$ are strongly Morita equivalent. Also, we suppose that $\mathcal {A}$ and $\mathcal {B}$ are saturated and that $A' \cap C={\bf C} 1$. We show that if $A\subset C$ and $B\subset D$ are strongly Morita equivalent, then there are an automorphism $f$ of $G$ and an equivalence bundle \hbox {$\mathcal {A}-\mathcal {B}^f $}-bundle over $G$ with the above properties, where $\mathcal {B}^f$ is the $C^*$-algebraic bundle induced by $\mathcal {B}$ and $f$, which is defined by $\mathcal {B}^f =\{B_{f(t)}\}_{t\in G}$. Furthermore, we give an application.\looseness -2
DOI : 10.21136/MB.2021.0005-21
Classification : 46L05, 46L08
Keywords: $C^*$-algebraic bundle; equivalence bundle; inclusions of $C^*$-algebra; strong Morita equivalence
@article{10_21136_MB_2021_0005_21,
     author = {Kodaka, Kazunori},
     title = {Equivalence bundles over a finite group and strong {Morita} equivalence for unital inclusions of unital $C^*$-algebras},
     journal = {Mathematica Bohemica},
     pages = {435--460},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2021.0005-21},
     mrnumber = {4512166},
     zbl = {07655819},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/}
}
TY  - JOUR
AU  - Kodaka, Kazunori
TI  - Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras
JO  - Mathematica Bohemica
PY  - 2022
SP  - 435
EP  - 460
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/
DO  - 10.21136/MB.2021.0005-21
LA  - en
ID  - 10_21136_MB_2021_0005_21
ER  - 
%0 Journal Article
%A Kodaka, Kazunori
%T Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras
%J Mathematica Bohemica
%D 2022
%P 435-460
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-21/
%R 10.21136/MB.2021.0005-21
%G en
%F 10_21136_MB_2021_0005_21
Kodaka, Kazunori. Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 435-460. doi: 10.21136/MB.2021.0005-21

[1] Abadie, F., Ferraro, D.: Equivalence of Fell bundles over groups. J. Oper. Theory 81 (2019), 273-319. | DOI | MR | JFM

[2] Brown, L. G., Green, P., Rieffel, M. A.: Stable isomorphism and strong Morita equivalence of $C^*$-algebras. Pac. J. Math. 71 (1977), 349-363. | DOI | MR | JFM

[3] Brown, L. G., Mingo, J. A., Shen, N-T.: Quasi-multipliers and embeddings of Hilbert $C^*$-bimodules. Can. J. Math. 46 (1994), 1150-1174. | DOI | MR | JFM

[4] Jensen, K. K., Thomsen, K.: Elements of $KK$-Theory. Mathematics: Theory & Applications. Birkhäuser, Basel (1991). | DOI | MR | JFM

[5] Kajiwara, T., Watatani, Y.: Crossed products of Hilbert $C^*$-bimodules by countable discrete groups. Proc. Am. Math. Soc. 126 (1998), 841-851. | DOI | MR | JFM

[6] Kajiwara, T., Watatani, Y.: Jones index theory by Hilbert $C^*$-bimodules and $K$-Theory. Trans. Am. Math. Soc. 352 (2000), 3429-3472. | DOI | MR | JFM

[7] Kodaka, K.: The Picard groups for unital inclusions of unital $C^*$-algebras. Acta Sci. Math. 86 (2020), 183-207. | DOI | MR | JFM

[8] Kodaka, K., Teruya, T.: Involutive equivalence bimodules and inclusions of $C^*$-algebras with Watatani index 2. J. Oper. Theory 57 (2007), 3-18. | MR | JFM

[9] Kodaka, K., Teruya, T.: A characterization of saturated $C^*$-algebraic bundles over finite groups. J. Aust. Math. Soc. 88 (2010), 363-383. | DOI | MR | JFM

[10] Kodaka, K., Teruya, T.: The strong Morita equivalence for inclusions of $C^*$-algebras and conditional expectations for equivalence bimodules. J. Aust. Math. Soc. 105 (2018), 103-144. | DOI | MR | JFM

[11] Kodaka, K., Teruya, T.: Coactions of a finite dimensional $C^*$-Hopf algebra on unital $C^*$-algebras, unital inclusions of unital $C^*$-algebras and the strong Morita equivalence. Stud. Math. 256 (2021), 169-185. | DOI | MR | JFM

[12] Rieffel, M. A.: $C^*$-algebras associated with irrational rotations. Pac. J. Math. 93 (1981), 415-429. | DOI | MR | JFM

[13] Watatani, Y.: Index for $C^*$-subalgebras. Mem. Am. Math. Soc. 424 (1990), 117 pages. | DOI | MR | JFM

Cité par Sources :