On weakened $(\alpha ,\delta )$-skew Armendariz rings
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 187-200
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note, for a ring endomorphism $\alpha $ and an $\alpha $-derivation $\delta $ of a ring $R$, the notion of weakened $(\alpha ,\delta )$-skew Armendariz rings is introduced as a generalization of $\alpha $-rigid rings and weak Armendariz rings. It is proved that $R$ is a weakened $(\alpha ,\delta )$-skew Armendariz ring if and only if $T_n(R)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz if and only if $R[x]/(x^n)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz ring for any positive integer $n$.
In this note, for a ring endomorphism $\alpha $ and an $\alpha $-derivation $\delta $ of a ring $R$, the notion of weakened $(\alpha ,\delta )$-skew Armendariz rings is introduced as a generalization of $\alpha $-rigid rings and weak Armendariz rings. It is proved that $R$ is a weakened $(\alpha ,\delta )$-skew Armendariz ring if and only if $T_n(R)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz if and only if $R[x]/(x^n)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz ring for any positive integer $n$.
DOI : 10.21136/MB.2021.0005-20
Classification : 16S36, 16S50, 16S99
Keywords: Armendariz ring; $(\alpha, \delta )$-skew Armendariz ring; weak Armendariz ring; weak $(\alpha, \delta )$-skew Armendariz ring
@article{10_21136_MB_2021_0005_20,
     author = {Farahani, Alireza Majdabadi and Maghasedi, Mohammad and Heydari, Farideh and Tavallaee, Hamidagha},
     title = {On weakened $(\alpha ,\delta )$-skew {Armendariz} rings},
     journal = {Mathematica Bohemica},
     pages = {187--200},
     year = {2022},
     volume = {147},
     number = {2},
     doi = {10.21136/MB.2021.0005-20},
     mrnumber = {4407351},
     zbl = {07547249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-20/}
}
TY  - JOUR
AU  - Farahani, Alireza Majdabadi
AU  - Maghasedi, Mohammad
AU  - Heydari, Farideh
AU  - Tavallaee, Hamidagha
TI  - On weakened $(\alpha ,\delta )$-skew Armendariz rings
JO  - Mathematica Bohemica
PY  - 2022
SP  - 187
EP  - 200
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-20/
DO  - 10.21136/MB.2021.0005-20
LA  - en
ID  - 10_21136_MB_2021_0005_20
ER  - 
%0 Journal Article
%A Farahani, Alireza Majdabadi
%A Maghasedi, Mohammad
%A Heydari, Farideh
%A Tavallaee, Hamidagha
%T On weakened $(\alpha ,\delta )$-skew Armendariz rings
%J Mathematica Bohemica
%D 2022
%P 187-200
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0005-20/
%R 10.21136/MB.2021.0005-20
%G en
%F 10_21136_MB_2021_0005_20
Farahani, Alireza Majdabadi; Maghasedi, Mohammad; Heydari, Farideh; Tavallaee, Hamidagha. On weakened $(\alpha ,\delta )$-skew Armendariz rings. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 187-200. doi: 10.21136/MB.2021.0005-20

[1] Alhevaz, A., Moussavi, A., Habibi, M.: On rings having McCoy-like conditions. Commun. Algebra 40 (2012), 1195-1221. | DOI | MR | JFM

[2] Anderson, D. D., Camillo, V.: Armendariz rings and Gaussian rings. Commun. Algebra 26 (1998), 2265-2272. | DOI | MR | JFM

[3] Anderson, D. D., Camillo, V.: Semigroups and rings whose zero products commute. Commun. Algebra 27 (1999), 2847-2852. | DOI | MR | JFM

[4] Annin, S.: Associated primes over skew polynomial rings. Commun. Algebra 30 (2002), 2511-2528. | DOI | MR | JFM

[5] Armendariz, E. P.: A note on extensions of Baer and P.P.-rings. J. Aust. Math. Soc. 18 (1974), 470-473. | DOI | MR | JFM

[6] Chen, J., Yang, X., Zhou, Y.: On strongly clean matrix and triangular matrix rings. Commun. Algebra 34 (2006), 3659-3674. | DOI | MR | JFM

[7] Chen, J., Zhou, Y.: Extensions of injectivity and coherent rings. Commun. Algebra 34 (2006), 275-288. | DOI | MR | JFM

[8] Chen, W., Cui, S.: On weakly semicommutative rings. Commun. Math. Res. 27 (2011), 179-192. | MR | JFM

[9] Habibi, M., Moussavi, A.: On nil skew Armendariz rings. Asian-Eur. J. Math. 5 (2012), Article ID 1250017, 16 pages. | DOI | MR | JFM

[10] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta. Math. Hung. 107 (2005), 207-224. | DOI | MR | JFM

[11] Hirano, Y.: On the uniqueness of rings of coefficients in skew polynomial rings. Publ. Math. 54 (1999), 489-495. | MR | JFM

[12] Hong, C. Y., Kim, H. K., Kim, N. K., Kwak, T. K., Lee, Y., Park, K. S.: Rings whose nilpotent elements form a Levitzki radical ring. Commun. Algebra 35 (2007), 1379-1390. | DOI | MR | JFM

[13] Hong, C. Y., Kim, N. K., Kwak, T. K.: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151 (2000), 215-226. | DOI | MR | JFM

[14] Huh, C., Lee, Y., Smoktunowicz, A.: Armendariz rings and semicommutative rings. Commun. Algebra 30 (2002), 751-761. | DOI | MR | JFM

[15] Kim, N. K., Lee, Y.: Armendariz rings and reduced rings. J. Algebra 223 (2000), 477-488. | DOI | MR | JFM

[16] Kim, N. K., Lee, Y.: Extensions of reversible rings. J. Pure Appl. Algebra 185 (2003), 207-223. | DOI | MR | JFM

[17] Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3 (1996), 289-300. | MR | JFM

[18] Lam, T. Y., Leroy, A., Matczuk, J.: Primeness, semiprimeness and prime radical of Ore extensions. Commun. Algebra 25 (1997), 2459-2506. | DOI | MR | JFM

[19] Lambek, J.: On the representation of modules by sheaves of factor modules. Can. Math. Bull. 14 (1971), 359-368. | DOI | MR | JFM

[20] Liu, Z., Zhao, R.: On weak Armendariz rings. Commun. Algebra 34 (2006), 2607-2616. | DOI | MR | JFM

[21] Moussavi, A., Hashemi, E.: On ($\alpha,\delta$)-skew Armendariz rings. J. Korean Math. Soc. 42 (2005), 353-363. | DOI | MR | JFM

[22] Rege, M. B., Chhawchharia, S.: Armendariz rings. Proc. Japan Acad., Ser. A 73 (1997), 14-17. | DOI | MR | JFM

[23] Shin, G.: Prime ideals and sheaf representation of a pseudo symmetric rings. Trans. Am. Math. Soc. 184 (1973), 43-60. | DOI | MR | JFM

[24] Wang, Y., Jiang, M., Ren, Y.: Ore extensions over weakly 2-primal rings. Commun. Math. Res. 32 (2016), 70-82. | DOI | MR | JFM

Cité par Sources :