Keywords: degenerate elliptic problem; existence; uniqueness; weak solution; weighted Sobolev space
@article{10_21136_MB_2021_0004_20,
author = {Sabri, Abdelali and Jamea, Ahmed and Talibi Alaoui, Hamad},
title = {Weak solution for nonlinear degenerate elliptic problem with {Dirichlet-type} boundary condition in weighted {Sobolev} spaces},
journal = {Mathematica Bohemica},
pages = {113--129},
year = {2022},
volume = {147},
number = {1},
doi = {10.21136/MB.2021.0004-20},
mrnumber = {4387471},
zbl = {07547244},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/}
}
TY - JOUR AU - Sabri, Abdelali AU - Jamea, Ahmed AU - Talibi Alaoui, Hamad TI - Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces JO - Mathematica Bohemica PY - 2022 SP - 113 EP - 129 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/ DO - 10.21136/MB.2021.0004-20 LA - en ID - 10_21136_MB_2021_0004_20 ER -
%0 Journal Article %A Sabri, Abdelali %A Jamea, Ahmed %A Talibi Alaoui, Hamad %T Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces %J Mathematica Bohemica %D 2022 %P 113-129 %V 147 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/ %R 10.21136/MB.2021.0004-20 %G en %F 10_21136_MB_2021_0004_20
Sabri, Abdelali; Jamea, Ahmed; Talibi Alaoui, Hamad. Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 113-129. doi: 10.21136/MB.2021.0004-20
[1] Abassi, A., Hachimi, A. El, Jamea, A.: Entropy solutions to nonlinear Neumann problems with $L^1$-data. Int. J. Math. Stat. 2 (2008), 4-17. | MR | JFM
[2] Cavalheiro, A. C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. (3) 26 (2008), 117-132. | DOI | MR | JFM
[3] Cavalheiro, A. C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal. 19 (2013), 41-54. | DOI | MR | JFM
[4] Cavalheiro, A. C.: Existence results for Dirichlet problems with degenerated $p$-Laplacian and $p$-biharmonic operators. Appl. Math. E-Notes 13 (2013), 234-242. | MR | JFM
[5] Cavalheiro, A. C.: Existence and uniqueness of solutions for Dirichlet problems with degenerate nonlinear elliptic operators. Differ. Equ. Dyn. Syst. 24 (2016), 305-317. | DOI | MR | JFM
[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM
[7] Diaz, J. I., Thelin, F. De: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25 (1994), 1085-1111. | DOI | MR | JFM
[8] Drábek, P.: The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems. Math. Bohem. 120 (1995), 169-195. | DOI | MR | JFM
[9] Drábek, P., Kufner, A., Mustonen, V.: Pseudo-monotonicity and degenerated or singular elliptic operators. Bull. Aust. Math. Soc. 58 (1998), 213-221. | DOI | MR | JFM
[10] Hästö, P. A.: The $p(x)$-Laplacian and applications. J. Anal. 15 (2007), 53-62. | MR | JFM
[11] Kilpeläinen, J. Heinonen,T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). | MR | JFM
[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM
[13] užička, M. R\accent23: Electrorheological Fluids: Modeling and Mathematical Theory. Lectures Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[14] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics 1736. Springer, Berlin (2000). | DOI | MR | JFM
Cité par Sources :