Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 113-129
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
DOI : 10.21136/MB.2021.0004-20
Classification : 35A15, 35J60, 35J65, 74G30
Keywords: degenerate elliptic problem; existence; uniqueness; weak solution; weighted Sobolev space
@article{10_21136_MB_2021_0004_20,
     author = {Sabri, Abdelali and Jamea, Ahmed and Talibi Alaoui, Hamad},
     title = {Weak solution for nonlinear degenerate elliptic problem with {Dirichlet-type} boundary condition in weighted {Sobolev} spaces},
     journal = {Mathematica Bohemica},
     pages = {113--129},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0004-20},
     mrnumber = {4387471},
     zbl = {07547244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/}
}
TY  - JOUR
AU  - Sabri, Abdelali
AU  - Jamea, Ahmed
AU  - Talibi Alaoui, Hamad
TI  - Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
JO  - Mathematica Bohemica
PY  - 2022
SP  - 113
EP  - 129
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/
DO  - 10.21136/MB.2021.0004-20
LA  - en
ID  - 10_21136_MB_2021_0004_20
ER  - 
%0 Journal Article
%A Sabri, Abdelali
%A Jamea, Ahmed
%A Talibi Alaoui, Hamad
%T Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
%J Mathematica Bohemica
%D 2022
%P 113-129
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0004-20/
%R 10.21136/MB.2021.0004-20
%G en
%F 10_21136_MB_2021_0004_20
Sabri, Abdelali; Jamea, Ahmed; Talibi Alaoui, Hamad. Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 113-129. doi: 10.21136/MB.2021.0004-20

[1] Abassi, A., Hachimi, A. El, Jamea, A.: Entropy solutions to nonlinear Neumann problems with $L^1$-data. Int. J. Math. Stat. 2 (2008), 4-17. | MR | JFM

[2] Cavalheiro, A. C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. (3) 26 (2008), 117-132. | DOI | MR | JFM

[3] Cavalheiro, A. C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal. 19 (2013), 41-54. | DOI | MR | JFM

[4] Cavalheiro, A. C.: Existence results for Dirichlet problems with degenerated $p$-Laplacian and $p$-biharmonic operators. Appl. Math. E-Notes 13 (2013), 234-242. | MR | JFM

[5] Cavalheiro, A. C.: Existence and uniqueness of solutions for Dirichlet problems with degenerate nonlinear elliptic operators. Differ. Equ. Dyn. Syst. 24 (2016), 305-317. | DOI | MR | JFM

[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM

[7] Diaz, J. I., Thelin, F. De: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25 (1994), 1085-1111. | DOI | MR | JFM

[8] Drábek, P.: The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems. Math. Bohem. 120 (1995), 169-195. | DOI | MR | JFM

[9] Drábek, P., Kufner, A., Mustonen, V.: Pseudo-monotonicity and degenerated or singular elliptic operators. Bull. Aust. Math. Soc. 58 (1998), 213-221. | DOI | MR | JFM

[10] Hästö, P. A.: The $p(x)$-Laplacian and applications. J. Anal. 15 (2007), 53-62. | MR | JFM

[11] Kilpeläinen, J. Heinonen,T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). | MR | JFM

[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM

[13] užička, M. R\accent23: Electrorheological Fluids: Modeling and Mathematical Theory. Lectures Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[14] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics 1736. Springer, Berlin (2000). | DOI | MR | JFM

Cité par Sources :