A note on the size Ramsey numbers for matchings versus cycles
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 229-234
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For graphs $G$, $F_1$, $F_2$, we write $G \rightarrow (F_1, F_2)$ if for every red-blue colouring of the edge set of $G$ we have a red copy of $F_1$ or a blue copy of $F_2$ in $G$. The size Ramsey number $\hat {r}(F_1, F_2)$ is the minimum number of edges of a graph $G$ such that $G \rightarrow (F_1, F_2)$. Erdős and Faudree proved that for the cycle $C_n$ of length $n$ and for $t \ge 2$ matchings $tK_2$, the size Ramsey number $\hat {r} (tK_2, C_n) n + (4t+3) \sqrt {n}$. We improve their upper bound for $t = 2$ and $t=3$ by showing that $\hat {r} (2K_2, C_n) \le n + 2 \sqrt {3n} + 9$ for $n \ge 12$ and $\hat {r} (3K_2, C_n) n + 6 \sqrt {n} + 9$ for $n \ge 25$.
For graphs $G$, $F_1$, $F_2$, we write $G \rightarrow (F_1, F_2)$ if for every red-blue colouring of the edge set of $G$ we have a red copy of $F_1$ or a blue copy of $F_2$ in $G$. The size Ramsey number $\hat {r}(F_1, F_2)$ is the minimum number of edges of a graph $G$ such that $G \rightarrow (F_1, F_2)$. Erdős and Faudree proved that for the cycle $C_n$ of length $n$ and for $t \ge 2$ matchings $tK_2$, the size Ramsey number $\hat {r} (tK_2, C_n) n + (4t+3) \sqrt {n}$. We improve their upper bound for $t = 2$ and $t=3$ by showing that $\hat {r} (2K_2, C_n) \le n + 2 \sqrt {3n} + 9$ for $n \ge 12$ and $\hat {r} (3K_2, C_n) n + 6 \sqrt {n} + 9$ for $n \ge 25$.
Classification :
05C35, 05C55
Keywords: size Ramsey number; matching; cycle
Keywords: size Ramsey number; matching; cycle
@article{10_21136_MB_2020_0174_18,
author = {Baskoro, Edy Tri and Vetr{\'\i}k, Tom\'a\v{s}},
title = {A note on the size {Ramsey} numbers for matchings versus cycles},
journal = {Mathematica Bohemica},
pages = {229--234},
year = {2021},
volume = {146},
number = {2},
doi = {10.21136/MB.2020.0174-18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0174-18/}
}
TY - JOUR AU - Baskoro, Edy Tri AU - Vetrík, Tomáš TI - A note on the size Ramsey numbers for matchings versus cycles JO - Mathematica Bohemica PY - 2021 SP - 229 EP - 234 VL - 146 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0174-18/ DO - 10.21136/MB.2020.0174-18 LA - en ID - 10_21136_MB_2020_0174_18 ER -
%0 Journal Article %A Baskoro, Edy Tri %A Vetrík, Tomáš %T A note on the size Ramsey numbers for matchings versus cycles %J Mathematica Bohemica %D 2021 %P 229-234 %V 146 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0174-18/ %R 10.21136/MB.2020.0174-18 %G en %F 10_21136_MB_2020_0174_18
Baskoro, Edy Tri; Vetrík, Tomáš. A note on the size Ramsey numbers for matchings versus cycles. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 229-234. doi: 10.21136/MB.2020.0174-18
Cité par Sources :