Engel BCI-algebras: an application of left and right commutators
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 133-150
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras.
We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras.
DOI : 10.21136/MB.2020.0160-18
Classification : 03G25, 06F35
Keywords: (left and right) Engel element; commutator; Engel BCI-algebra
@article{10_21136_MB_2020_0160_18,
     author = {Najafi, Ardavan and Borumand Saeid, Arsham},
     title = {Engel {BCI-algebras:} an application of left and right commutators},
     journal = {Mathematica Bohemica},
     pages = {133--150},
     year = {2021},
     volume = {146},
     number = {2},
     doi = {10.21136/MB.2020.0160-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0160-18/}
}
TY  - JOUR
AU  - Najafi, Ardavan
AU  - Borumand Saeid, Arsham
TI  - Engel BCI-algebras: an application of left and right commutators
JO  - Mathematica Bohemica
PY  - 2021
SP  - 133
EP  - 150
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0160-18/
DO  - 10.21136/MB.2020.0160-18
LA  - en
ID  - 10_21136_MB_2020_0160_18
ER  - 
%0 Journal Article
%A Najafi, Ardavan
%A Borumand Saeid, Arsham
%T Engel BCI-algebras: an application of left and right commutators
%J Mathematica Bohemica
%D 2021
%P 133-150
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0160-18/
%R 10.21136/MB.2020.0160-18
%G en
%F 10_21136_MB_2020_0160_18
Najafi, Ardavan; Borumand Saeid, Arsham. Engel BCI-algebras: an application of left and right commutators. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 133-150. doi: 10.21136/MB.2020.0160-18

[1] Abdollahi, A.: Engel graph associated with a group. J. Algebra 318 (2007), 680-691. | DOI | MR | JFM

[2] Abdollahi, A.: Engel elements in groups. Groups St. Andrews 2009 in Bath. Vol. I. London Mathematical Society Lecture Note Series 387. Cambridge University Press, Cambridge (2011), 94-117 C. M. Campbell, et al. | DOI | MR | JFM

[3] Dudek, W. A.: On group-like BCI-algebras. Demonstr. Math. 21 (1988), 369-376. | DOI | MR | JFM

[4] Dudek, W. A.: Finite BCK-algebras are solvable. Commun. Korean Math. Soc. 31 (2016), 261-262. | DOI | MR | JFM

[5] Huang, Y.: BCI-Algebras. Science Press, Beijing (2006).

[6] Iséki, K.: An algebra related with a propositional calculus. Proc. Japan Acad. 42 (1966), 26-29. | DOI | MR | JFM

[7] Iséki, K.: On BCI-algebras. Math. Semin. Notes, Kobe Univ. 8 (1980), 125-130. | MR | JFM

[8] Lei, T., Xi, C.: $p$-radical in BCI-algebras. Math. Jap. 30 (1985), 511-517. | MR | JFM

[9] Najafi, A.: Pseudo-commutators in BCK-algebras. Pure Math. Sci. 2 (2013), 29-32. | DOI | JFM

[10] Najafi, A., Saeid, A. Borumand: Solvable BCK-algebras. Çankaya Univ. J. Sci. Eng. 11 (2014), 19-28.

[11] Najafi, A., Saeid, A. Borumand, Eslami, E.: Commutators in BCI-algebras. J. Intell. Fuzzy Syst. 31 (2016), 357-366. | DOI | JFM

[12] Najafi, A., Saeid, A. Borumand, Eslami, E.: Centralizers of BCI-algebras. (to appear) in Miskolc Math. Notes.

[13] Najafi, A., Eslami, E., Saeid, A. Borumand: A new type of nilpotent BCI-algebras. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 64 (2018), 309-326 \99999MR99999 3896549 \filbreak. | MR | JFM

Cité par Sources :