Fuzzy differential subordinations connected with the linear operator
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 397-406.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties.
DOI : 10.21136/MB.2020.0159-19
Classification : 30C45
Keywords: fuzzy differential subordination; fuzzy best dominant; linear operator
@article{10_21136_MB_2020_0159_19,
     author = {El-Deeb, Sheza M. and Oros, Georgia I.},
     title = {Fuzzy differential subordinations connected with the linear operator},
     journal = {Mathematica Bohemica},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {146},
     number = {4},
     year = {2021},
     doi = {10.21136/MB.2020.0159-19},
     mrnumber = {4336546},
     zbl = {07442509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/}
}
TY  - JOUR
AU  - El-Deeb, Sheza M.
AU  - Oros, Georgia I.
TI  - Fuzzy differential subordinations connected with the linear operator
JO  - Mathematica Bohemica
PY  - 2021
SP  - 397
EP  - 406
VL  - 146
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/
DO  - 10.21136/MB.2020.0159-19
LA  - en
ID  - 10_21136_MB_2020_0159_19
ER  - 
%0 Journal Article
%A El-Deeb, Sheza M.
%A Oros, Georgia I.
%T Fuzzy differential subordinations connected with the linear operator
%J Mathematica Bohemica
%D 2021
%P 397-406
%V 146
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/
%R 10.21136/MB.2020.0159-19
%G en
%F 10_21136_MB_2020_0159_19
El-Deeb, Sheza M.; Oros, Georgia I. Fuzzy differential subordinations connected with the linear operator. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 397-406. doi : 10.21136/MB.2020.0159-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/

Cité par Sources :