Fuzzy differential subordinations connected with the linear operator
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 397-406
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties.
DOI :
10.21136/MB.2020.0159-19
Classification :
30C45
Keywords: fuzzy differential subordination; fuzzy best dominant; linear operator
Keywords: fuzzy differential subordination; fuzzy best dominant; linear operator
@article{10_21136_MB_2020_0159_19,
author = {El-Deeb, Sheza M. and Oros, Georgia I.},
title = {Fuzzy differential subordinations connected with the linear operator},
journal = {Mathematica Bohemica},
pages = {397--406},
publisher = {mathdoc},
volume = {146},
number = {4},
year = {2021},
doi = {10.21136/MB.2020.0159-19},
mrnumber = {4336546},
zbl = {07442509},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/}
}
TY - JOUR AU - El-Deeb, Sheza M. AU - Oros, Georgia I. TI - Fuzzy differential subordinations connected with the linear operator JO - Mathematica Bohemica PY - 2021 SP - 397 EP - 406 VL - 146 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/ DO - 10.21136/MB.2020.0159-19 LA - en ID - 10_21136_MB_2020_0159_19 ER -
%0 Journal Article %A El-Deeb, Sheza M. %A Oros, Georgia I. %T Fuzzy differential subordinations connected with the linear operator %J Mathematica Bohemica %D 2021 %P 397-406 %V 146 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0159-19/ %R 10.21136/MB.2020.0159-19 %G en %F 10_21136_MB_2020_0159_19
El-Deeb, Sheza M.; Oros, Georgia I. Fuzzy differential subordinations connected with the linear operator. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 397-406. doi: 10.21136/MB.2020.0159-19
Cité par Sources :