Keywords: linear differential equation; growth of solution; finite singular point
@article{10_21136_MB_2020_0148_19,
author = {Cherief, Samir and Hamouda, Saada},
title = {Finite and infinite order of growth of solutions to linear differential equations near a singular point},
journal = {Mathematica Bohemica},
pages = {315--332},
year = {2021},
volume = {146},
number = {3},
doi = {10.21136/MB.2020.0148-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0148-19/}
}
TY - JOUR AU - Cherief, Samir AU - Hamouda, Saada TI - Finite and infinite order of growth of solutions to linear differential equations near a singular point JO - Mathematica Bohemica PY - 2021 SP - 315 EP - 332 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0148-19/ DO - 10.21136/MB.2020.0148-19 LA - en ID - 10_21136_MB_2020_0148_19 ER -
%0 Journal Article %A Cherief, Samir %A Hamouda, Saada %T Finite and infinite order of growth of solutions to linear differential equations near a singular point %J Mathematica Bohemica %D 2021 %P 315-332 %V 146 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0148-19/ %R 10.21136/MB.2020.0148-19 %G en %F 10_21136_MB_2020_0148_19
Cherief, Samir; Hamouda, Saada. Finite and infinite order of growth of solutions to linear differential equations near a singular point. Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 315-332. doi: 10.21136/MB.2020.0148-19
[1] Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt. Die Grundlehren der Mathematischen Wissenschaften 66. Springer, Berlin (1965), German. | MR | JFM
[2] Fettouch, H., Hamouda, S.: Growth of local solutions to linear differential equations around an isolated essential singularity. Electron. J. Differ. Equ. 2016 (2016), Paper No. 226, 10 pages. | MR | JFM
[3] Hamouda, S.: Finite and infinite order solutions of a class of higher order linear differential equations. Aust. J. Math. Anal. Appl. 9 (2012), Article No. 10, 9 pages. | MR | JFM
[4] Hamouda, S.: Properties of solutions to linear differential equations with analytic coefficients in the unit disc. Electron. J. Differ. Equ. 2012 (2012), Paper No. 177, 8 pages. | MR | JFM
[5] Hamouda, S.: Iterated order of solutions of linear differential equations in the unit disc. Comput. Methods Funct. Theory 13 (2013), 545-555. | DOI | MR | JFM
[6] Hamouda, S.: The possible orders of growth of solutions to certain linear differential equations near a singular point. J. Math. Anal. Appl. 458 (2018), 992-1008. | DOI | MR | JFM
[7] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). | MR | JFM
[8] Khrystiyanyn, A. Ya., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. | MR | JFM
[9] Kinnunen, L.: Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math. 22 (1998), 385-405. | MR | JFM
[10] Kondratyuk, A., Laine, I.: Meromorphic functions in multiply connected domains. Fourier Series Methods in Complex Analysis I. Laine University of Joensuu 10. Department of Mathematics, University of Joensuu, Joensuu (2006), 9-111. | MR | JFM
[11] Korhonen, R.: Nevanlinna theory in an annulus. Value Distribution Theory and Related Topics Advances in Complex Analysis and Its Applications 3. Kluwer Academic Publishers, Boston (2004), 167-179. | DOI | MR | JFM
[12] Laine, I.: Nevanlinna Theory and Complex Differential Equations. De Gruyter Studies in Mathematics 15. W. de Gruyter, Berlin (1993). | DOI | MR | JFM
[13] Laine, I., Yang, R.: Finite order solutions of complex linear differential equations. Electron. J. Differ. Equ. 2004 (2004), Paper No. 65, 8 pages. | MR | JFM
[14] Lund, M. E., Ye, Z.: Logarithmic derivatives in annuli. J. Math. Anal. Appl. 356 (2009), 441-452. | DOI | MR | JFM
[15] Tsuji, M.: Potential Theory in Modern Function Theory. Chelsea Publishing Company, New York (1975). | MR | JFM
[16] Whittaker, J. M.: The order of the derivative of a meromorphic function. J. Lond. Math. Soc. 11 (1936), 82-87. | DOI | MR | JFM
[17] Yang, L.: Value Distribution Theory. Springer, Berlin (1993). | DOI | MR | JFM
Cité par Sources :