Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2020_0114_18, author = {Lafuente-Rodriguez, Ramiro and McGovern, Warren Wm.}, title = {When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base}, journal = {Mathematica Bohemica}, pages = {69--89}, publisher = {mathdoc}, volume = {146}, number = {1}, year = {2021}, doi = {10.21136/MB.2020.0114-18}, mrnumber = {4227312}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/} }
TY - JOUR AU - Lafuente-Rodriguez, Ramiro AU - McGovern, Warren Wm. TI - When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base JO - Mathematica Bohemica PY - 2021 SP - 69 EP - 89 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/ DO - 10.21136/MB.2020.0114-18 LA - en ID - 10_21136_MB_2020_0114_18 ER -
%0 Journal Article %A Lafuente-Rodriguez, Ramiro %A McGovern, Warren Wm. %T When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base %J Mathematica Bohemica %D 2021 %P 69-89 %V 146 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/ %R 10.21136/MB.2020.0114-18 %G en %F 10_21136_MB_2020_0114_18
Lafuente-Rodriguez, Ramiro; McGovern, Warren Wm. When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 69-89. doi : 10.21136/MB.2020.0114-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/
Cité par Sources :