When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 69-89
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and $T_1$, but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the $l$-group in question is weakly complemented. A slightly weaker topological property than having a base of clopen subsets is having a clopen $\pi $-base. Recall that a $\pi $-base is a collection of nonempty open subsets such that every nonempty open subset of the space contains a member of the $\pi $-base; obviously, a base is a $\pi $-base. In what follows we classify when the inverse topology on the space of prime subgroups has a clopen $\pi $-base.
It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and $T_1$, but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the $l$-group in question is weakly complemented. A slightly weaker topological property than having a base of clopen subsets is having a clopen $\pi $-base. Recall that a $\pi $-base is a collection of nonempty open subsets such that every nonempty open subset of the space contains a member of the $\pi $-base; obviously, a base is a $\pi $-base. In what follows we classify when the inverse topology on the space of prime subgroups has a clopen $\pi $-base.
DOI : 10.21136/MB.2020.0114-18
Classification : 06F15, 06F20
Keywords: lattice-ordered group; minimal prime subgroup; maximal $d$-subgroup; archimedean $l$-group; $\bold {W}$
@article{10_21136_MB_2020_0114_18,
     author = {Lafuente-Rodriguez, Ramiro and McGovern, Warren Wm.},
     title = {When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base},
     journal = {Mathematica Bohemica},
     pages = {69--89},
     year = {2021},
     volume = {146},
     number = {1},
     doi = {10.21136/MB.2020.0114-18},
     mrnumber = {4227312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/}
}
TY  - JOUR
AU  - Lafuente-Rodriguez, Ramiro
AU  - McGovern, Warren Wm.
TI  - When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
JO  - Mathematica Bohemica
PY  - 2021
SP  - 69
EP  - 89
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/
DO  - 10.21136/MB.2020.0114-18
LA  - en
ID  - 10_21136_MB_2020_0114_18
ER  - 
%0 Journal Article
%A Lafuente-Rodriguez, Ramiro
%A McGovern, Warren Wm.
%T When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
%J Mathematica Bohemica
%D 2021
%P 69-89
%V 146
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/
%R 10.21136/MB.2020.0114-18
%G en
%F 10_21136_MB_2020_0114_18
Lafuente-Rodriguez, Ramiro; McGovern, Warren Wm. When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 69-89. doi: 10.21136/MB.2020.0114-18

[1] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. Rezai: On $z^0$-ideals in $C(X)$. Fund. Math. 160 (1999), 15-25. | DOI | MR | JFM

[2] Bhattacharjee, P., McGovern, W. Wm.: When $ Min(A)^{-1}$ is Hausdorff. Commun. Algebra 41 (2013), 99-108. | DOI | MR | JFM

[3] Bhattacharjee, P., McGovern, W. Wm.: Lamron $\ell$-groups. Quaest. Math. 41 (2018), 81-98. | DOI | MR | JFM

[4] Bhattacharjee, P., McGovern, W. Wm.: Maximal $d$-subgroups and ultrafilters. Rend. Circ. Mat. Palermo, Series 2 67 (2018), 421-440. | DOI | MR | JFM

[5] Conrad, P.: Lattice Ordered Groups. Tulane Lecture Notes. Tulane University, New Orleans (1970). | JFM

[6] Conrad, P., Martínez, J.: Complemented lattice-ordered groups. Indag. Math., New Ser. 1 (1990), 281-297. | DOI | MR | JFM

[7] Darnel, M. R.: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics 187. Marcel Dekker, New York (1995). | MR | JFM

[8] Ghashghaei, E., McGovern, W. Wm.: Fusible rings. Commun. Algebra 45 (2017), 1151-1165. | DOI | MR | JFM

[9] Huijsmans, C. B., Pagter, B. de: On $z$-ideals and $d$-ideals in Riesz spaces. II. Indag. Math. 42 (1980), 391-408. | DOI | MR | JFM

[10] Huijsmans, C. B., Pagter, B. de: Maximal $d$-ideals in a Riesz space. Can. J. Math. 35 (1983), 1010-1029. | DOI | MR | JFM

[11] Kist, J.: Compact spaces of minimal prime ideals. Math. Z. 111 (1969), 151-158. | DOI | MR | JFM

[12] Knox, M. L., McGovern, W. Wm.: Feebly projectable $\ell$-groups. Algebra Univers. 62 (2009), 91-112. | DOI | MR | JFM

[13] Levy, R.: Almost-$P$-spaces. Can. J. Math. 29 (1977), 284-288. | DOI | MR | JFM

[14] Martínez, J., Zenk, E. R.: When an algebraic frame is regular. Algebra Univers. 50 (2003), 231-257. | DOI | MR | JFM

[15] Martínez, J., Zenk, E. R.: Epicompletion in frames with skeletal maps. I.: Compact regular frames. Appl. Categ. Struct. 16 (2008), 521-533. | DOI | MR | JFM

[16] McGovern, W. Wm.: Neat rings. J. Pure Appl. Algebra 205 (2006), 243-265. | DOI | MR | JFM

[17] Speed, T. P.: Spaces of ideals of distributive lattices. II: Minimal prime ideals. J. Aust. Math. Soc. 18 (1974), 54-72. | DOI | MR | JFM

Cité par Sources :