Keywords: lattice-ordered group; minimal prime subgroup; maximal $d$-subgroup; archimedean $l$-group; $\bold {W}$
@article{10_21136_MB_2020_0114_18,
author = {Lafuente-Rodriguez, Ramiro and McGovern, Warren Wm.},
title = {When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base},
journal = {Mathematica Bohemica},
pages = {69--89},
year = {2021},
volume = {146},
number = {1},
doi = {10.21136/MB.2020.0114-18},
mrnumber = {4227312},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/}
}
TY - JOUR
AU - Lafuente-Rodriguez, Ramiro
AU - McGovern, Warren Wm.
TI - When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
JO - Mathematica Bohemica
PY - 2021
SP - 69
EP - 89
VL - 146
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/
DO - 10.21136/MB.2020.0114-18
LA - en
ID - 10_21136_MB_2020_0114_18
ER -
%0 Journal Article
%A Lafuente-Rodriguez, Ramiro
%A McGovern, Warren Wm.
%T When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
%J Mathematica Bohemica
%D 2021
%P 69-89
%V 146
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0114-18/
%R 10.21136/MB.2020.0114-18
%G en
%F 10_21136_MB_2020_0114_18
Lafuente-Rodriguez, Ramiro; McGovern, Warren Wm. When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 69-89. doi: 10.21136/MB.2020.0114-18
[1] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. Rezai: On $z^0$-ideals in $C(X)$. Fund. Math. 160 (1999), 15-25. | DOI | MR | JFM
[2] Bhattacharjee, P., McGovern, W. Wm.: When $ Min(A)^{-1}$ is Hausdorff. Commun. Algebra 41 (2013), 99-108. | DOI | MR | JFM
[3] Bhattacharjee, P., McGovern, W. Wm.: Lamron $\ell$-groups. Quaest. Math. 41 (2018), 81-98. | DOI | MR | JFM
[4] Bhattacharjee, P., McGovern, W. Wm.: Maximal $d$-subgroups and ultrafilters. Rend. Circ. Mat. Palermo, Series 2 67 (2018), 421-440. | DOI | MR | JFM
[5] Conrad, P.: Lattice Ordered Groups. Tulane Lecture Notes. Tulane University, New Orleans (1970). | JFM
[6] Conrad, P., Martínez, J.: Complemented lattice-ordered groups. Indag. Math., New Ser. 1 (1990), 281-297. | DOI | MR | JFM
[7] Darnel, M. R.: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics 187. Marcel Dekker, New York (1995). | MR | JFM
[8] Ghashghaei, E., McGovern, W. Wm.: Fusible rings. Commun. Algebra 45 (2017), 1151-1165. | DOI | MR | JFM
[9] Huijsmans, C. B., Pagter, B. de: On $z$-ideals and $d$-ideals in Riesz spaces. II. Indag. Math. 42 (1980), 391-408. | DOI | MR | JFM
[10] Huijsmans, C. B., Pagter, B. de: Maximal $d$-ideals in a Riesz space. Can. J. Math. 35 (1983), 1010-1029. | DOI | MR | JFM
[11] Kist, J.: Compact spaces of minimal prime ideals. Math. Z. 111 (1969), 151-158. | DOI | MR | JFM
[12] Knox, M. L., McGovern, W. Wm.: Feebly projectable $\ell$-groups. Algebra Univers. 62 (2009), 91-112. | DOI | MR | JFM
[13] Levy, R.: Almost-$P$-spaces. Can. J. Math. 29 (1977), 284-288. | DOI | MR | JFM
[14] Martínez, J., Zenk, E. R.: When an algebraic frame is regular. Algebra Univers. 50 (2003), 231-257. | DOI | MR | JFM
[15] Martínez, J., Zenk, E. R.: Epicompletion in frames with skeletal maps. I.: Compact regular frames. Appl. Categ. Struct. 16 (2008), 521-533. | DOI | MR | JFM
[16] McGovern, W. Wm.: Neat rings. J. Pure Appl. Algebra 205 (2006), 243-265. | DOI | MR | JFM
[17] Speed, T. P.: Spaces of ideals of distributive lattices. II: Minimal prime ideals. J. Aust. Math. Soc. 18 (1974), 54-72. | DOI | MR | JFM
Cité par Sources :