Remarks on cardinal inequalities in convergence spaces
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 215-227
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.
We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.
DOI : 10.21136/MB.2020.0090-19
Classification : 54A20, 54A25
Keywords: convergence space; cardinal function; inequality; set-theoretic topology
@article{10_21136_MB_2020_0090_19,
     author = {Yoshitomi, Kazushi},
     title = {Remarks on cardinal inequalities in convergence spaces},
     journal = {Mathematica Bohemica},
     pages = {215--227},
     year = {2021},
     volume = {146},
     number = {2},
     doi = {10.21136/MB.2020.0090-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0090-19/}
}
TY  - JOUR
AU  - Yoshitomi, Kazushi
TI  - Remarks on cardinal inequalities in convergence spaces
JO  - Mathematica Bohemica
PY  - 2021
SP  - 215
EP  - 227
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0090-19/
DO  - 10.21136/MB.2020.0090-19
LA  - en
ID  - 10_21136_MB_2020_0090_19
ER  - 
%0 Journal Article
%A Yoshitomi, Kazushi
%T Remarks on cardinal inequalities in convergence spaces
%J Mathematica Bohemica
%D 2021
%P 215-227
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0090-19/
%R 10.21136/MB.2020.0090-19
%G en
%F 10_21136_MB_2020_0090_19
Yoshitomi, Kazushi. Remarks on cardinal inequalities in convergence spaces. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 215-227. doi: 10.21136/MB.2020.0090-19

[1] Alexandroff, P. S., Urysohn, P. S.: Über kompakte topologische Räume. Akad. Nauk SSSR, Trudy Mat. Inst. Steklov 31 (1950), 94 pages Russian. | MR | JFM

[2] Čech, E.: Topological Spaces. Publishing House of the Czechoslovak Academy of Sciences, Prague; John Wiley & Sons, London (1966). | MR | JFM

[3] Choquet, G.: Convergences. Ann. Univ. Grenoble, Sect. Sci. Math. Phys., II. Ser. 23 (1948), 57-112. | MR | JFM

[4] Dolecki, S., Gauld, D.: Irregularity. Topology Appl. 154 (2007), 1565-1580 Erratum ibid. 159 2012 3658-3659. | DOI | MR | JFM

[5] Dolecki, S., Mynard, F.: Convergence Foundations of Topology. World Scientific, Hackensack (2016). | DOI | MR | JFM

[6] Katětov, M.: Über $H$-abgeschlossene und bikompakte Räume. Čas. Pěst. Mat. Fys. 69 (1940), 36-49 German. | DOI | MR | JFM

[7] Katětov, M.: On $H$-closed extensions of topological spaces. Čas. Pěst. Mat. Fys. 72 (1947), 17-32. | DOI | MR | JFM

[8] Reynolds, J. P.: Hausdorff closedness in the convergence setting. Topol. Proc. 49 (2017), 135-152. | MR | JFM

[9] Rudin, M. E.: Lectures on Set Theoretic Topology. CBMS Regional Conference Series in Mathematics 23. AMS, Providence (1975). | DOI | MR | JFM

Cité par Sources :