Keywords: Dirichlet series; Banach algebra
@article{10_21136_MB_2020_0080_19,
author = {Chutani, Lakshika},
title = {On an entire function represented by multiple {Dirichlet} series},
journal = {Mathematica Bohemica},
pages = {279--288},
year = {2021},
volume = {146},
number = {3},
doi = {10.21136/MB.2020.0080-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0080-19/}
}
TY - JOUR AU - Chutani, Lakshika TI - On an entire function represented by multiple Dirichlet series JO - Mathematica Bohemica PY - 2021 SP - 279 EP - 288 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0080-19/ DO - 10.21136/MB.2020.0080-19 LA - en ID - 10_21136_MB_2020_0080_19 ER -
Chutani, Lakshika. On an entire function represented by multiple Dirichlet series. Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 279-288. doi: 10.21136/MB.2020.0080-19
[1] Akanksha, A., Srivastava, G. S.: Spaces of vector-valued Dirichlet series in a half plane. Front. Math. China 9 (2014), 1239-1252. | DOI | MR | JFM
[2] Azpeitia, A. G.: A remark on the Ritt order of entire functions defined by Dirichlet series. Proc. Am. Math. Soc. 12 (1961), 722-723. | DOI | MR | JFM
[3] Azpeitia, A. G.: On the maximum modulus and the maximum term of an entire Dirichlet series. Proc. Am. Math. Soc. 12 (1961), 717-721. | DOI | MR | JFM
[4] Azpeitia, A. G.: On the Ritt order of entire Dirichlet series. Q. J. Math., Oxf. II. Ser. 15 (1964), 275-277. | DOI | MR | JFM
[5] Behnam, H. S., Srivastava, G. S.: Spaces of analytic functions represented by Dirichlet series of two complex variables. Approximation Theory Appl. 18 (2002), 1-14. | DOI | MR | JFM
[6] Cahen, E.: Sur la fonction $\zeta(s)$ de Riemann et sur des fonctions analogues. Ann. Sci. Éc. Norm. Supér. (3) 11 (1894), 75-164 French \99999JFM99999 25.0702.01. | DOI | MR
[7] Dagene, E.: The central index of Dirichlet series. Litov. Mat. Sb. 8 (1968), 503-520 Russian. | MR | JFM
[8] Daoud, S.: On the class of entire Dirichlet functions of several complex variables having finite order point. Port. Math. 43 (1986), 417-427. | MR | JFM
[9] Estermann, T.: On certain functions represented by Dirichlet series. Proc. Lond. Math. Soc. (2) 27 (1928), 435-448 \99999JFM99999 54.0366.03. | DOI | MR
[10] Janusauskas, A. I.: Elementary theorems on convergence of double Dirichlet series. Sov. Math., Dokl. 18 (1977), 610-614 translation from Dokl. Akad. Nauk. SSSR 234 1977 34-37. | MR | JFM
[11] Kong, Y.: On some $q$-orders and $q$-types of Dirichlet-Hadamard product function. Acta Math. Sin., Chin. Ser. Chinese 52 (2009), 1165-1172. | MR | JFM
[12] Kong, Y., Gan, H.: On orders and types of Dirichlet series of slow growth. Turk. J. Math. 34 (2010), 1-11. | MR | JFM
[13] Kumar, N., Chutani, L., Manocha, G.: Certain results on a class of entire Dirichlet series in two variables. Sci. Magna 11 (2016), 33-40. | MR
[14] Kumar, N., Manocha, G.: A class of entire Dirichlet series as an FK-space and a Fréchet space. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 1571-1578. | DOI | MR | JFM
[15] Kumar, N., Manocha, G.: On a class of entire functions represented by Dirichlet series. J. Egypt. Math. Soc. 21 (2013), 21-24. | DOI | MR | JFM
[16] Kumar, N., Manocha, G.: A study of various results for a class of entire Dirichlet series with complex frequencies. Math. Bohem. 143 (2018), 1-9. | DOI | MR | JFM
[17] Larsen, R.: Banach Algebras: An Introduction. Pure and Applied Mathematics 24. Marcel Dekker, New York (1973). | MR | JFM
[18] Larsen, R.: Functional Analysis: An Introduction. Pure and Applied Mathematics 15. Marcel Dekker, New York (1973). | MR | JFM
[19] Leonard, I. E.: Banach sequence spaces. J. Math. Anal. Appl. 54 (1976), 245-265. | DOI | MR | JFM
[20] Liang, M., Gao, Z.: Convergence and growth of multiple Dirichlet series. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1640-1648. | DOI | MR | JFM
[21] Rahman, Q. I.: A note on entire functions defined by Dirichlet series. Math. Student 24 (1956), 203-207. | MR | JFM
[22] Rahman, Q. I.: On means of entire functions. Q. J. Math., Oxf. II. Ser. 7 (1956), 192-195. | DOI | MR | JFM
[23] Rahman, Q. I.: On the lower order of entire functions defined by Dirichlet series. Q. J. Math., Oxf. II. Ser. 7 (1956), 96-99. | DOI | MR | JFM
[24] Rahman, Q. I.: On the maximum modulus and the coefficients of an entire Dirichlet series. Tôhoku Math. J., II. Ser. 8 (1956), 108-113. | DOI | MR | JFM
[25] Rahman, Q. I.: On entire functions defined by a Dirichlet series. Proc. Am. Math. Soc. 10 (1959), 213-215. | DOI | MR | JFM
[26] Rahman, Q. I.: On entire functions defined by a Dirichlet series: Correction. Proc. Am. Math. Soc. 11 (1960), 624-625. | DOI | MR | JFM
[27] Sarkar, P. K.: On the Gol'dberg order and Gol'dberg type of an entire function of several complex variables represented by multiple Dirichlet series. Indian J. Pure Appl. Math. 13 (1982), 1221-1229. | MR | JFM
[28] Tanaka, C.: Note on Dirichlet series. V: On the integral functions defined by Dirichlet series. I. Tôhoku Math. J., II. Ser. 5 (1953), 67-78. | DOI | MR | JFM
[29] Tanaka, C.: Note on Dirichlet series. VI: On the integral functions defined by Dirichlet series. II. Mem. Sch. Sci. Eng., Waseda Univ. 17 (1953), 85-94. | MR
[30] Tanaka, C.: Note on Dirichlet series. X: Remark on S. Mandelbrojt's theorem. Proc. Japan Acad. 29 (1953), 423-426. | DOI | MR | JFM
[31] Vaish, S. K.: On the coefficients of entire multiple Dirichlet series of several complex variables. Bull. Math. Soc. Sci. Roum., Nouv. Sér. 46 (2003), 195-202. | MR | JFM
Cité par Sources :