Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 185-197
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type $$ (r(t)(z'(t))^\gamma )' +\sum _{i=1}^m q_i(t)x^{\alpha _i}(\sigma _i(t))=0, \quad t\geq t_0, $$ where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^{\infty }(r(\eta ))^{-1/\gamma } {\rm d}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma \alpha _i$. Our main tool is Lebesgue's dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.
In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type $$ (r(t)(z'(t))^\gamma )' +\sum _{i=1}^m q_i(t)x^{\alpha _i}(\sigma _i(t))=0, \quad t\geq t_0, $$ where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^{\infty }(r(\eta ))^{-1/\gamma } {\rm d}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma \alpha _i$. Our main tool is Lebesgue's dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.
DOI : 10.21136/MB.2020.0063-19
Classification : 34C10, 34K11
Keywords: oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem
@article{10_21136_MB_2020_0063_19,
     author = {Tripathy, Arun K. and Santra, Shyam S.},
     title = {Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients},
     journal = {Mathematica Bohemica},
     pages = {185--197},
     year = {2021},
     volume = {146},
     number = {2},
     doi = {10.21136/MB.2020.0063-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0063-19/}
}
TY  - JOUR
AU  - Tripathy, Arun K.
AU  - Santra, Shyam S.
TI  - Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
JO  - Mathematica Bohemica
PY  - 2021
SP  - 185
EP  - 197
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0063-19/
DO  - 10.21136/MB.2020.0063-19
LA  - en
ID  - 10_21136_MB_2020_0063_19
ER  - 
%0 Journal Article
%A Tripathy, Arun K.
%A Santra, Shyam S.
%T Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
%J Mathematica Bohemica
%D 2021
%P 185-197
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0063-19/
%R 10.21136/MB.2020.0063-19
%G en
%F 10_21136_MB_2020_0063_19
Tripathy, Arun K.; Santra, Shyam S. Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 185-197. doi: 10.21136/MB.2020.0063-19

[1] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 30 (2014), 1-6. | DOI | MR | JFM

[2] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order Emden-Fowler neutral delay differential equations. Ann. Mat. Pura Appl. (4) 193 (2014), 1861-1875. | DOI | MR | JFM

[3] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 266 (2015), 481-490. | DOI | MR | JFM

[4] Agarwal, R. P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274 (2016), 178-181. | DOI | MR | JFM

[5] Baculíková, B., Džurina, J.: Oscillation theorems for second order neutral differential equations. Comput. Math. Appl. 61 (2011), 94-99. | DOI | MR | JFM

[6] Baculíková, B., Džurina, J.: Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 62 (2011), 4472-4478. | DOI | MR | JFM

[7] Baculíková, B., Li, T., Džurina, J.: Oscillation theorems for second order neutral differential equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 74, 13 pages. | DOI | MR | JFM

[8] Bohner, M., Grace, S. R., Jadlovská, I.: Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 60, 12 pages. | DOI | MR | JFM

[9] Brands, J. J. A. M.: Oscillation theorems for second-order functional differential equations. J. Math. Anal. Appl. 63 (1978), 54-64. | DOI | MR | JFM

[10] Chatzarakis, G. E., Džurina, J., Jadlovská, I.: New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 347 (2019), 404-416. | DOI | MR | JFM

[11] Chatzarakis, G. E., Grace, S. R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019 (2019), Article ID 5691758, 7 pages. | DOI | JFM

[12] Chatzarakis, G. E., Jadlovská, I.: Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math. Stat. 48 (2019), 170-179. | DOI | MR

[13] Džurina, J.: Oscillation theorems for second order advanced neutral differential equations. Tatra Mt. Math. Publ. 48 (2011), 61-71. | DOI | MR | JFM

[14] Džurina, J., Grace, S. R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293 (2020), 910-922. | DOI | MR | JFM

[15] Grace, S. R., Džurina, J., Jadlovská, I., Li, T.: An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages. | DOI | MR

[16] Hale, J.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). | DOI | MR | JFM

[17] Karpuz, B., Santra, S. S.: Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacet. J. Math. Stat 48 (2019), 633-643. | DOI | MR

[18] Li, H., Zhao, Y., Han, Z.: New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 60 (2019), 191-200. | DOI | MR | JFM

[19] Li, Q., Wang, R., Chen, F., Li, T.: Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Adv. Difference Equ. 2015 (2015), Article ID 35, 7 pages. | DOI | MR | JFM

[20] Li, T., Rogovchenko, Y. V.: Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages. | DOI | MR | JFM

[21] Li, T., Rogovchenko, Y. V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288 (2015), 1150-1162. | DOI | MR | JFM

[22] Li, T., Rogovchenko, Y. V.: Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 184 (2017), 489-500. | DOI | MR | JFM

[23] Pinelas, S., Santra, S. S.: Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages. | DOI | MR | JFM

[24] Qian, Y., Xu, R.: Some new oscillation criteria for higher-order quasi-linear neutral delay differential equations. Differ. Equ. Appl. 3 (2011), 323-335. | DOI | MR | JFM

[25] Santra, S. S.: Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 33-51. | DOI | MR | JFM

[26] Santra, S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays. Mathematica 59 (2017), 111-123. | MR | JFM

[27] Santra, S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term. Mathematica 61 (2019), 63-78. | DOI | MR | JFM

[28] Tripathy, A. K., Panda, B., Sethi, A. K.: On oscillatory nonlinear second order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 247-258. | DOI | MR | JFM

[29] Wong, J. S. W.: Necessary and sufficient conditions for oscillation of second order neutral differential equations. J. Math. Anal. Appl. 252 (2000), 342-352. | DOI | MR | JFM

[30] Zhang, C., Agarwal, R. P., Bohner, M., Li, T.: Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 761-778. | DOI | MR | JFM

Cité par Sources :