Keywords: linear integro-differential equation; periodic problem; distributed deviation; solvability
@article{10_21136_MB_2020_0061_19,
author = {Mukhigulashvili, Sulkhan and Novotn\'a, Veronika},
title = {The periodic problem for the second order integro-differential equations with distributed deviation},
journal = {Mathematica Bohemica},
pages = {167--183},
year = {2021},
volume = {146},
number = {2},
doi = {10.21136/MB.2020.0061-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0061-19/}
}
TY - JOUR AU - Mukhigulashvili, Sulkhan AU - Novotná, Veronika TI - The periodic problem for the second order integro-differential equations with distributed deviation JO - Mathematica Bohemica PY - 2021 SP - 167 EP - 183 VL - 146 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0061-19/ DO - 10.21136/MB.2020.0061-19 LA - en ID - 10_21136_MB_2020_0061_19 ER -
%0 Journal Article %A Mukhigulashvili, Sulkhan %A Novotná, Veronika %T The periodic problem for the second order integro-differential equations with distributed deviation %J Mathematica Bohemica %D 2021 %P 167-183 %V 146 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0061-19/ %R 10.21136/MB.2020.0061-19 %G en %F 10_21136_MB_2020_0061_19
Mukhigulashvili, Sulkhan; Novotná, Veronika. The periodic problem for the second order integro-differential equations with distributed deviation. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 167-183. doi: 10.21136/MB.2020.0061-19
[1] Bravyi, E.: On solvability of periodic boundary value problems for second order linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 5, 18 pages. | DOI | MR | JFM
[2] Bravyi, E. I.: On the best constants in the solvability conditions for the periodic boundary value problem for higher-order functional differential equations. Differ. Equ. 48 (2012), 779-786 Translation from Differ. Uravn. 48 2012 773-780. | DOI | MR | JFM
[3] Chiu, K.-S.: Periodic solutions for nonlinear integro-differential systems with piecewise constant argument. Sci. World J. 2014 (2014), Article ID 514854, 14 pages. | DOI
[4] Erbe, L. H., Guo, D.: Periodic boundary value problems for second order integrodifferential equations of mixed type. Appl. Anal. 46 (1992), 249-258. | DOI | MR | JFM
[5] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). | MR | JFM
[6] Hu, S., Lakshmikantham, V.: Periodic boundary value problems for second order integro-differential equations of Volterra type. Appl. Anal. 21 (1986), 199-205. | DOI | MR | JFM
[7] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations. J. Sov. Math. 43 (1988), 2259-2339 Translated from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. | DOI | MR | JFM
[8] Kiguradze, I., Půža, B.: On boundary value problems for functional-differential equations. Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. | MR | JFM
[9] Mukhigulashvili, S., Partsvania, N., Půža, B.: On a periodic problem for higher-order differential equations with a deviating argument. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 3232-3241. | DOI | MR | JFM
[10] Nieto, J.: Periodic boundary value problem for second order integro-ordinary differential equations with general kernel and Carathéodory nonlinearities. Int. J. Math. Math. Sci. 18 (1995), 757-764. | DOI | MR | JFM
Cité par Sources :