Some properties of weak Banach-Saks operators
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 407-418
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, {\rm L}-weakly compact; respectively, {\rm M}-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).
We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, {\rm L}-weakly compact; respectively, {\rm M}-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).
DOI : 10.21136/MB.2020.0055-18
Classification : 46A40, 46B40, 46B42
Keywords: weak Banach-Saks operator; weakly compact operator; {\rm L}-weakly compact operator; {\rm M}-weakly compact operator; order continuous norm, positive Schur property; reflexive Banach space
@article{10_21136_MB_2020_0055_18,
     author = {Aboutafail, Othman and Zraoula, Larbi and Hafidi, Noufissa},
     title = {Some properties of weak {Banach-Saks} operators},
     journal = {Mathematica Bohemica},
     pages = {407--418},
     year = {2021},
     volume = {146},
     number = {4},
     doi = {10.21136/MB.2020.0055-18},
     mrnumber = {4336547},
     zbl = {07442510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/}
}
TY  - JOUR
AU  - Aboutafail, Othman
AU  - Zraoula, Larbi
AU  - Hafidi, Noufissa
TI  - Some properties of weak Banach-Saks operators
JO  - Mathematica Bohemica
PY  - 2021
SP  - 407
EP  - 418
VL  - 146
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/
DO  - 10.21136/MB.2020.0055-18
LA  - en
ID  - 10_21136_MB_2020_0055_18
ER  - 
%0 Journal Article
%A Aboutafail, Othman
%A Zraoula, Larbi
%A Hafidi, Noufissa
%T Some properties of weak Banach-Saks operators
%J Mathematica Bohemica
%D 2021
%P 407-418
%V 146
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/
%R 10.21136/MB.2020.0055-18
%G en
%F 10_21136_MB_2020_0055_18
Aboutafail, Othman; Zraoula, Larbi; Hafidi, Noufissa. Some properties of weak Banach-Saks operators. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 407-418. doi: 10.21136/MB.2020.0055-18

[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006). | DOI | MR | JFM

[2] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity 7 (2003), 135-139. | DOI | MR | JFM

[3] Aqzzouz, B., Aboutafail, O., Belghiti, T., H'Michane, J.: The $b$-weak compactness of weak Banach-Saks operators. Math. Bohem. 138 (2013), 113-120. | DOI | MR | JFM

[4] Aqzzouz, B., Elbour, A., H'Michane, J.: Some properties of the class of positive Dunford-Pettis operators. J. Math. Anal. Appl. 354 (2009), 295-300. | DOI | MR | JFM

[5] Aqzzouz, B., Elbour, A., H'Michane, J.: On some properties of the class of semi-compact operators. Bull. Belg. Math. Soc. - Simon Stevin 18 (2011), 761-767. | DOI | MR | JFM

[6] Aqzzouz, B., H'Michane, J., Aboutafail, O.: Weak compactness of AM-compact operators. Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 329-338. | DOI | MR | JFM

[7] Baernstein, A.: On reflexivity and summability. Stud. Math. 42 (1972), 91-94. | DOI | MR | JFM

[8] Beauzamy, B.: Propriété de Banach-Saks et modèles étalés. Séminaire sur la Géométrie des Espaces de Banach (1977-1978) École Polytech., Palaiseau (1978), 16 pages French. | MR | JFM

[9] Chen, Z. L., Wickstead, A. W.: $L$-weakly and $M$-weakly compact operators. Indag. Math., New Ser. 10 (1999), 321-336. | DOI | MR | JFM

[10] Ghoussoub, N., Johnson, W. B.: Counterexamples to several problems on the factorization of bounded linear operators. Proc. Am. Math. Soc. 92 (1984), 233-238. | DOI | MR | JFM

[11] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). | DOI | MR | JFM

[12] Nishiura, T., Waterman, D.: Reflexivity and summability. Stud. Math. 23 (1963), 53-57. | DOI | MR | JFM

[13] Rosenthal, H. P.: Weakly independent sequences and the weak Banach-Saks property. Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity Duke University, Durham (1975), 26 pages.

[14] Wnuk, W.: Banach Lattices with Order Continuous Norms. Advanced Topics in Mathematics. Polish Scientific Publishers, Warsaw (1999). | JFM

[15] Zaanen, A. C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1997). | DOI | MR | JFM

Cité par Sources :