Keywords: weak Banach-Saks operator; weakly compact operator; {\rm L}-weakly compact operator; {\rm M}-weakly compact operator; order continuous norm, positive Schur property; reflexive Banach space
@article{10_21136_MB_2020_0055_18,
author = {Aboutafail, Othman and Zraoula, Larbi and Hafidi, Noufissa},
title = {Some properties of weak {Banach-Saks} operators},
journal = {Mathematica Bohemica},
pages = {407--418},
year = {2021},
volume = {146},
number = {4},
doi = {10.21136/MB.2020.0055-18},
mrnumber = {4336547},
zbl = {07442510},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/}
}
TY - JOUR AU - Aboutafail, Othman AU - Zraoula, Larbi AU - Hafidi, Noufissa TI - Some properties of weak Banach-Saks operators JO - Mathematica Bohemica PY - 2021 SP - 407 EP - 418 VL - 146 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/ DO - 10.21136/MB.2020.0055-18 LA - en ID - 10_21136_MB_2020_0055_18 ER -
%0 Journal Article %A Aboutafail, Othman %A Zraoula, Larbi %A Hafidi, Noufissa %T Some properties of weak Banach-Saks operators %J Mathematica Bohemica %D 2021 %P 407-418 %V 146 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0055-18/ %R 10.21136/MB.2020.0055-18 %G en %F 10_21136_MB_2020_0055_18
Aboutafail, Othman; Zraoula, Larbi; Hafidi, Noufissa. Some properties of weak Banach-Saks operators. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 407-418. doi: 10.21136/MB.2020.0055-18
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006). | DOI | MR | JFM
[2] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity 7 (2003), 135-139. | DOI | MR | JFM
[3] Aqzzouz, B., Aboutafail, O., Belghiti, T., H'Michane, J.: The $b$-weak compactness of weak Banach-Saks operators. Math. Bohem. 138 (2013), 113-120. | DOI | MR | JFM
[4] Aqzzouz, B., Elbour, A., H'Michane, J.: Some properties of the class of positive Dunford-Pettis operators. J. Math. Anal. Appl. 354 (2009), 295-300. | DOI | MR | JFM
[5] Aqzzouz, B., Elbour, A., H'Michane, J.: On some properties of the class of semi-compact operators. Bull. Belg. Math. Soc. - Simon Stevin 18 (2011), 761-767. | DOI | MR | JFM
[6] Aqzzouz, B., H'Michane, J., Aboutafail, O.: Weak compactness of AM-compact operators. Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 329-338. | DOI | MR | JFM
[7] Baernstein, A.: On reflexivity and summability. Stud. Math. 42 (1972), 91-94. | DOI | MR | JFM
[8] Beauzamy, B.: Propriété de Banach-Saks et modèles étalés. Séminaire sur la Géométrie des Espaces de Banach (1977-1978) École Polytech., Palaiseau (1978), 16 pages French. | MR | JFM
[9] Chen, Z. L., Wickstead, A. W.: $L$-weakly and $M$-weakly compact operators. Indag. Math., New Ser. 10 (1999), 321-336. | DOI | MR | JFM
[10] Ghoussoub, N., Johnson, W. B.: Counterexamples to several problems on the factorization of bounded linear operators. Proc. Am. Math. Soc. 92 (1984), 233-238. | DOI | MR | JFM
[11] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). | DOI | MR | JFM
[12] Nishiura, T., Waterman, D.: Reflexivity and summability. Stud. Math. 23 (1963), 53-57. | DOI | MR | JFM
[13] Rosenthal, H. P.: Weakly independent sequences and the weak Banach-Saks property. Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity Duke University, Durham (1975), 26 pages.
[14] Wnuk, W.: Banach Lattices with Order Continuous Norms. Advanced Topics in Mathematics. Polish Scientific Publishers, Warsaw (1999). | JFM
[15] Zaanen, A. C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1997). | DOI | MR | JFM
Cité par Sources :