Keywords: general linear boundary value problem; linear ordinary differential systems; numerical solvability; convergence of difference schemes; effective necessary and sufficient conditions; generalized ordinary differential equations in the Kurzweil sense
@article{10_21136_MB_2020_0052_18,
author = {Ashordia, Malkhaz},
title = {On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations},
journal = {Mathematica Bohemica},
pages = {333--362},
year = {2021},
volume = {146},
number = {3},
doi = {10.21136/MB.2020.0052-18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0052-18/}
}
TY - JOUR AU - Ashordia, Malkhaz TI - On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations JO - Mathematica Bohemica PY - 2021 SP - 333 EP - 362 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0052-18/ DO - 10.21136/MB.2020.0052-18 LA - en ID - 10_21136_MB_2020_0052_18 ER -
%0 Journal Article %A Ashordia, Malkhaz %T On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations %J Mathematica Bohemica %D 2021 %P 333-362 %V 146 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0052-18/ %R 10.21136/MB.2020.0052-18 %G en %F 10_21136_MB_2020_0052_18
Ashordia, Malkhaz. On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations. Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 333-362. doi: 10.21136/MB.2020.0052-18
[1] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1 (1994), 343-351. | DOI | MR | JFM
[2] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czech. Math. J. 46 (1996), 385-404. | DOI | MR | JFM
[3] Ashordia, M.: Lyapunov stability of systems of linear generalized ordinary differential equations. Comput. Math. Appl. 50 (2005), 957-982. | DOI | MR | JFM
[4] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. | MR | JFM
[5] Ashordia, M.: The initial problem for linear systems of generalized ordinary differential equations, linear impulsive and ordinary differential systems. Numerical solvability. Mem. Differ. Equ. Math. Phys. 78 (2019), 1-162. | MR
[6] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Chichester (2003). | DOI | MR | JFM
[7] Gelashvili, S., Kiguradze, I.: On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differ. Equ. Math. Phys. 5 (1995), 1-113. | MR | JFM
[8] Godunov, S. K., Ryaben'kij, V. S.: Schémas aux différences. Introduction à la théorie. Éditions Mir, Moscow (1977), French. | MR | JFM
[9] Hall, G., (eds.), J. M. Watt: Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford (1976). | MR | JFM
[10] Kurzweil, J.: Generalized ordinary differential equations. Czech. Math. J. 8 (1958), 360-388. | DOI | MR | JFM
[11] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John Wiley & Sons, Chichester (1991). | MR | JFM
[12] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). | DOI | MR | JFM
[13] Saks, S.: Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). | JFM
[14] Samarskii, A. A.: The Theory of Difference Schemes. Pure and Applied Mathematics, Marcel Dekker 240. Marcel Dekker, New York (2001). | DOI | MR | JFM
[15] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing, Dordrecht (1979). | MR | JFM
Cité par Sources :