Keywords: evolution equation; state-dependent delay; Lyapunov stability; virus infection model
@article{10_21136_MB_2020_0028_19,
author = {Fedoryshyna, Kateryna and Rezounenko, Alexander},
title = {Viral in-host infection model with two state-dependent delays: stability of continuous solutions},
journal = {Mathematica Bohemica},
pages = {91--114},
year = {2021},
volume = {146},
number = {1},
doi = {10.21136/MB.2020.0028-19},
mrnumber = {4227313},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0028-19/}
}
TY - JOUR AU - Fedoryshyna, Kateryna AU - Rezounenko, Alexander TI - Viral in-host infection model with two state-dependent delays: stability of continuous solutions JO - Mathematica Bohemica PY - 2021 SP - 91 EP - 114 VL - 146 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0028-19/ DO - 10.21136/MB.2020.0028-19 LA - en ID - 10_21136_MB_2020_0028_19 ER -
%0 Journal Article %A Fedoryshyna, Kateryna %A Rezounenko, Alexander %T Viral in-host infection model with two state-dependent delays: stability of continuous solutions %J Mathematica Bohemica %D 2021 %P 91-114 %V 146 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0028-19/ %R 10.21136/MB.2020.0028-19 %G en %F 10_21136_MB_2020_0028_19
Fedoryshyna, Kateryna; Rezounenko, Alexander. Viral in-host infection model with two state-dependent delays: stability of continuous solutions. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 91-114. doi: 10.21136/MB.2020.0028-19
[1] Beddington, J. R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecology 44 (1975), 331-340. | DOI
[2] DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V.: A model for trophic interaction. Ecology 56 (1975), 881-892. | DOI
[3] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences 110. Springer, New York (1995). | DOI | MR | JFM
[4] Driver, R. D.: A two-body problem of classical electrodynamics: the one-dimensional case. Ann. Phys. 21 (1963), 122-142. | DOI | MR | JFM
[5] Global Hepatitis Report 2017. World Health Organization, Geneva (2017). Available at http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf
[6] Gourley, S. A., Kuang, Y., Nagy, J. D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2 (2008), 140-153. | DOI | MR | JFM
[7] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, Berlin (1977). | DOI | MR | JFM
[8] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: Theory and applications. Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. | DOI | MR
[9] Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with \hbox{Beddington}-DeAngelis functional response. Appl. Math. Lett. 22 (2009), 1690-1693. | DOI | MR | JFM
[10] Huang, G., Ma, W., Takeuchi, Y.: Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 24 (2011), 1199-1203. | DOI | MR | JFM
[11] Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69 (2007), 1871-1886. | DOI | MR | JFM
[12] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). | DOI | MR | JFM
[13] Lyapunov, A. M.: The General Problem of the Stability of Motion. Charkov Mathematical Society, Charkov (1892), Russian \99999JFM99999 24.0876.02. | MR
[14] McCluskey, C. C.: Using Lyapunov functions to construct Lyapunov functionals for delay differential equations. SIAM J. Appl. Dyn. Syst. 14 (2015), 1-24. | DOI | MR | JFM
[15] Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272 (1996), 74-79. | DOI
[16] Perelson, A. S., Nelson, P.: Mathematical analysis of HIV dynamics in vivo. SIAM Rev. 41 (1999), 3-44. | DOI | MR | JFM
[17] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 (1996), 1582-1586. | DOI
[18] Rezounenko, A. V.: Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. | DOI | MR | JFM
[19] Rezounenko, A. V.: Non-linear partial differential equations with discrete state-dependent delays in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. | DOI | MR | JFM
[20] Rezounenko, A. V.: A condition on delay for differential equations with discrete state-dependent delay. J. Math. Anal. Appl. 385 (2012), 506-516. | DOI | MR | JFM
[21] Rezounenko, A. V.: Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays. J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. | MR | JFM
[22] Rezounenko, A. V.: Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. | DOI | MR | JFM
[23] Rezounenko, A. V.: Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 1547-1563. | DOI | MR | JFM
[24] Rezounenko, A. V.: Viral infection model with diffusion and state-dependent delay: a case of logistic growth. Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. | MR
[25] Smith, H. L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs 41. AMS, Providence (1995). | DOI | MR | JFM
[26] Walther, H.-O.: The solution manifold and $C\sp 1$-smoothness for differential equations with state-dependent delay. J. Diff. Equations 195 (2003), 46-65. | DOI | MR | JFM
[27] Wang, X., Liu, S.: A class of delayed viral models with saturation infection rate and immune response. Math. Methods Appl. Sci. 36 (2013), 125-142. | DOI | MR | JFM
[28] Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: \kern-.27ptGlobal threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl. Math. Comput. 241 (2014), 298-316. | DOI | MR | JFM
[29] Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. General Virology 84 (2003), 1743-1750. | DOI
[30] Wodarz, D.: Killer Cell Dynamics. Mathematical and Computational Approaches to Immunology. Interdisciplinary Applied Mathematics 32. Springer, New York (2007). | DOI | MR | JFM
[31] Xu, S.: Global stability of the virus dynamics model with Crowley-Martin functional response. Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 9, 10 pages. | DOI | MR | JFM
[32] Yan, Y., Wang, W.: Global stability of a five-dimesional model with immune responses and delay. Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 401-416. | DOI | MR | JFM
[33] Yousfi, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection. J. Math. Biol. 63 (2011), 933-957. | DOI | MR | JFM
[34] Zhao, Y., Xu, Z.: Global dynamics for a delayed hepatitis C virus infection model. Electron. J. Differ. Equ. 2014 (2014), 1-18. | MR | JFM
[35] Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 511-524. | DOI | MR | JFM
Cité par Sources :