Keywords: fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem
@article{10_21136_MB_2020_0004_19,
author = {Derbazi, Choukri and Hammouche, Hadda},
title = {Existence and uniqueness of integrable solutions to fractional {Langevin} equations involving two fractional orders with initial value problems},
journal = {Mathematica Bohemica},
pages = {363--374},
year = {2021},
volume = {146},
number = {3},
doi = {10.21136/MB.2020.0004-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/}
}
TY - JOUR AU - Derbazi, Choukri AU - Hammouche, Hadda TI - Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems JO - Mathematica Bohemica PY - 2021 SP - 363 EP - 374 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/ DO - 10.21136/MB.2020.0004-19 LA - en ID - 10_21136_MB_2020_0004_19 ER -
%0 Journal Article %A Derbazi, Choukri %A Hammouche, Hadda %T Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems %J Mathematica Bohemica %D 2021 %P 363-374 %V 146 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/ %R 10.21136/MB.2020.0004-19 %G en %F 10_21136_MB_2020_0004_19
Derbazi, Choukri; Hammouche, Hadda. Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 363-374. doi: 10.21136/MB.2020.0004-19
[1] Ahmad, B., Nieto, J. J., Alsaedi, A.: A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders. Adv. Difference Equ. 2012 (2012), Article ID 54, 16 pages. | DOI | MR | JFM
[2] Ahmed, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13 (2012), 599-606. | DOI | MR | JFM
[3] Ahmad, B., Ntouyas, S.: Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Math. Bohem. 139 (2014), 451-465. | DOI | MR | JFM
[4] Baghani, H.: Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. J. Fixed Point Theory Appl. 20 (2018), Article ID 63, 7 pages. | DOI | MR | JFM
[5] Bhairat, S. P., Dhaigude, D.-B.: Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Math. Bohem. 144 (2019), 203-220. | DOI | MR | JFM
[6] Benchohra, M., Hamani, S., Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 2391-2396. | DOI | MR | JFM
[7] Benchohra, M., Souid, M. S.: $L^1$-solutions for implicit fractional order differential equations with nonlocal conditions. Filomat 30 (2016), 1485-1492. | DOI | MR | JFM
[8] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). | DOI | MR | JFM
[9] El-Sayed, A. M. A., El-Salam, S. A. Abd: $L_p$-solution of weighted Cauchy-type problem of a diffre-integral functional equation. Int. J. Nonlinear Sci. 5 (2008), 281-288. | MR | JFM
[10] El-Sayed, A. M. A., Hashem, H. H. G.: Integrable and continuous solutions of a nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 2008 (2008), Article ID 25, 10 pages. | DOI | MR | JFM
[11] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM
[12] Liu, Y.: Existence of solutions of impulsive boundary value problems for singular fractional differential systems. Math. Bohem. 142 (2017), 405-444. | DOI | MR | JFM
[13] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication. John Wiley & Sons, New York (1993). | MR | JFM
[14] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). | MR | JFM
[15] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM
[16] Seba, D.: Nonlinear fractional differential inclusion with nonlocal fractional integrodifferential boundary conditions in Banach spaces. Math. Bohem. 142 (2017), 309-321. | DOI | MR | JFM
[17] Sontakke, B., Shaikh, A., Nisar, K.: Existence and uniqueness of integrable solutions of fractional order initial value equations. J. Math. Model. 6 (2018), 137-148. | DOI | MR | JFM
[18] Souid, M. S.: $L^1$-solutions of boundary value problems for implicit fractional order differential equations with integral conditions. Int. J. Adv. Research Math. 11 (2018), 8-17. | DOI
[19] Yu, T., Deng, K., Luo, M.: Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1661-1668. | DOI | MR | JFM
[20] Zhang, S.: Existence results of positive solutions to fractional differential equation with integral boundary conditions. Math. Bohem. 135 (2010), 299-317. | DOI | MR | JFM
[21] Zhou, Z., Qiao, Y.: Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. Bound. Value Probl. 2018 (2018), Article ID 152, 10 pages. | DOI | MR
Cité par Sources :