Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 363-374
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.
We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.
DOI : 10.21136/MB.2020.0004-19
Classification : 26A33, 34A08
Keywords: fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem
@article{10_21136_MB_2020_0004_19,
     author = {Derbazi, Choukri and Hammouche, Hadda},
     title = {Existence and uniqueness of integrable solutions to fractional {Langevin} equations involving two fractional orders with initial value problems},
     journal = {Mathematica Bohemica},
     pages = {363--374},
     year = {2021},
     volume = {146},
     number = {3},
     doi = {10.21136/MB.2020.0004-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/}
}
TY  - JOUR
AU  - Derbazi, Choukri
AU  - Hammouche, Hadda
TI  - Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
JO  - Mathematica Bohemica
PY  - 2021
SP  - 363
EP  - 374
VL  - 146
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/
DO  - 10.21136/MB.2020.0004-19
LA  - en
ID  - 10_21136_MB_2020_0004_19
ER  - 
%0 Journal Article
%A Derbazi, Choukri
%A Hammouche, Hadda
%T Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
%J Mathematica Bohemica
%D 2021
%P 363-374
%V 146
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0004-19/
%R 10.21136/MB.2020.0004-19
%G en
%F 10_21136_MB_2020_0004_19
Derbazi, Choukri; Hammouche, Hadda. Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Mathematica Bohemica, Tome 146 (2021) no. 3, pp. 363-374. doi: 10.21136/MB.2020.0004-19

[1] Ahmad, B., Nieto, J. J., Alsaedi, A.: A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders. Adv. Difference Equ. 2012 (2012), Article ID 54, 16 pages. | DOI | MR | JFM

[2] Ahmed, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13 (2012), 599-606. | DOI | MR | JFM

[3] Ahmad, B., Ntouyas, S.: Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Math. Bohem. 139 (2014), 451-465. | DOI | MR | JFM

[4] Baghani, H.: Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. J. Fixed Point Theory Appl. 20 (2018), Article ID 63, 7 pages. | DOI | MR | JFM

[5] Bhairat, S. P., Dhaigude, D.-B.: Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Math. Bohem. 144 (2019), 203-220. | DOI | MR | JFM

[6] Benchohra, M., Hamani, S., Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 2391-2396. | DOI | MR | JFM

[7] Benchohra, M., Souid, M. S.: $L^1$-solutions for implicit fractional order differential equations with nonlocal conditions. Filomat 30 (2016), 1485-1492. | DOI | MR | JFM

[8] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). | DOI | MR | JFM

[9] El-Sayed, A. M. A., El-Salam, S. A. Abd: $L_p$-solution of weighted Cauchy-type problem of a diffre-integral functional equation. Int. J. Nonlinear Sci. 5 (2008), 281-288. | MR | JFM

[10] El-Sayed, A. M. A., Hashem, H. H. G.: Integrable and continuous solutions of a nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 2008 (2008), Article ID 25, 10 pages. | DOI | MR | JFM

[11] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM

[12] Liu, Y.: Existence of solutions of impulsive boundary value problems for singular fractional differential systems. Math. Bohem. 142 (2017), 405-444. | DOI | MR | JFM

[13] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication. John Wiley & Sons, New York (1993). | MR | JFM

[14] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). | MR | JFM

[15] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM

[16] Seba, D.: Nonlinear fractional differential inclusion with nonlocal fractional integrodifferential boundary conditions in Banach spaces. Math. Bohem. 142 (2017), 309-321. | DOI | MR | JFM

[17] Sontakke, B., Shaikh, A., Nisar, K.: Existence and uniqueness of integrable solutions of fractional order initial value equations. J. Math. Model. 6 (2018), 137-148. | DOI | MR | JFM

[18] Souid, M. S.: $L^1$-solutions of boundary value problems for implicit fractional order differential equations with integral conditions. Int. J. Adv. Research Math. 11 (2018), 8-17. | DOI

[19] Yu, T., Deng, K., Luo, M.: Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1661-1668. | DOI | MR | JFM

[20] Zhang, S.: Existence results of positive solutions to fractional differential equation with integral boundary conditions. Math. Bohem. 135 (2010), 299-317. | DOI | MR | JFM

[21] Zhou, Z., Qiao, Y.: Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. Bound. Value Probl. 2018 (2018), Article ID 152, 10 pages. | DOI | MR

Cité par Sources :