Oscillation of deviating differential equations
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Consider the first-order linear delay (advanced) differential equation$$ x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0}, $$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) $$ and $$ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg ) $$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
Consider the first-order linear delay (advanced) differential equation$$ x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0}, $$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) $$ and $$ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg ) $$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
DOI :
10.21136/MB.2020.0002-19
Classification :
34K06, 34K11
Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
@article{10_21136_MB_2020_0002_19,
author = {Chatzarakis, George E.},
title = {Oscillation of deviating differential equations},
journal = {Mathematica Bohemica},
pages = {435--448},
year = {2020},
volume = {145},
number = {4},
doi = {10.21136/MB.2020.0002-19},
mrnumber = {4221844},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/}
}
TY - JOUR AU - Chatzarakis, George E. TI - Oscillation of deviating differential equations JO - Mathematica Bohemica PY - 2020 SP - 435 EP - 448 VL - 145 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/ DO - 10.21136/MB.2020.0002-19 LA - en ID - 10_21136_MB_2020_0002_19 ER -
Chatzarakis, George E. Oscillation of deviating differential equations. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448. doi: 10.21136/MB.2020.0002-19
Cité par Sources :