Oscillation of deviating differential equations
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the first-order linear delay (advanced) differential equation$$ x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0}, $$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) $$ and $$ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg ) $$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
Consider the first-order linear delay (advanced) differential equation$$ x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0}, $$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) $$ and $$ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg ) $$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
DOI : 10.21136/MB.2020.0002-19
Classification : 34K06, 34K11
Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
@article{10_21136_MB_2020_0002_19,
     author = {Chatzarakis, George E.},
     title = {Oscillation of deviating differential equations},
     journal = {Mathematica Bohemica},
     pages = {435--448},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2020.0002-19},
     mrnumber = {4221844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
TI  - Oscillation of deviating differential equations
JO  - Mathematica Bohemica
PY  - 2020
SP  - 435
EP  - 448
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/
DO  - 10.21136/MB.2020.0002-19
LA  - en
ID  - 10_21136_MB_2020_0002_19
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%T Oscillation of deviating differential equations
%J Mathematica Bohemica
%D 2020
%P 435-448
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/
%R 10.21136/MB.2020.0002-19
%G en
%F 10_21136_MB_2020_0002_19
Chatzarakis, George E. Oscillation of deviating differential equations. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448. doi: 10.21136/MB.2020.0002-19

[1] Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218 (2011), 3880-3887. | DOI | MR | JFM

[2] Chatzarakis, G. E.: Differential equations with non-monotone arguments: Iterative oscillation results. J. Math. Comput. Sci. 6 (2016), 953-964.

[3] Chatzarakis, G. E.: On oscillation of differential equations with non-monotone deviating arguments. Mediterr. J. Math. 14 (2017), Paper No. 82, 17 pages. | DOI | MR | JFM

[4] Chatzarakis, G. E., Jadlovská, I.: Improved iterative oscillation tests for first-order deviating differential equations. Opusc. Math. 38 (2018), 327-356. | DOI | MR | JFM

[5] Chatzarakis, G. E., Jadlovská, I.: Oscillations in differential equations caused by non-monotone arguments. (to appear) in Nonlinear Stud. | MR

[6] Chatzarakis, G. E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018 (2018), Article ID 8237634, 18 pages. | DOI | JFM

[7] Chatzarakis, G. E., Ocalan, " O. ": Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. 30 (2015), 310-323. | DOI | MR | JFM

[8] El-Morshedy, H. A., Attia, E. R.: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett. 54 (2016), 54-59. | DOI | MR | JFM

[9] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1995). | MR | JFM

[10] Erbe, L. H., Zhang, B. G.: Oscillation for first order linear differential equations with deviating arguments. Differ. Integral Equ. 1 (1988), 305-314. | MR | JFM

[11] Fukagai, N., Kusano, T.: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl., IV. Ser. 136 (1984), 95-117. | DOI | MR | JFM

[12] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. With Applications. Clarendon Press, Oxford (1991). | MR | JFM

[13] Koplatadze, R. G., Chanturiya, T. A.: Oscillating and monotone solutions of first order differential equations with deviating argument. Differ. Uravn. 18 (1982), 1463-1465 Russian. | MR | JFM

[14] Koplatadze, R. G., Kvinikadze, G.: On the oscillation of solutions of first-order delay differential inequalities and equations. Georgian Math. J. 1 (1994), 675-685. | DOI | MR | JFM

[15] Kwong, M. K.: Oscillation of first-order delay equations. J. Math. Anal. Appl. 156 (1991), 274-286. | DOI | MR | JFM

[16] Ladas, G., Lakshmikantham, V., Papadakis, J. S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. Delay and Functional Differential Equations and Their Applications Academic Press, New York (1972), 219-231 K. Schmitt. | DOI | MR | JFM

[17] Ladde, G. S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 63 (1977), 351-359. | MR | JFM

[18] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). | MR | JFM

[19] Li, X., Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl. 269 (2002), 462-488. | DOI | MR | JFM

[20] Myshkis, A. D.: Linear homogeneous differential equations of the first order with deviating arguments. Usp. Mat. Nauk 5 (1950), 160-162 Russian. | MR | JFM

[21] Yu, J. S., Wang, Z. C., Zhang, B. G., Qian, X. Z.: Oscillations of differential equations with deviating arguments. Panam. Math. J. 2 (1992), 59-78. | MR | JFM

[22] Zhang, B. G.: Oscillation of solutions of the first-order advanced type differential equations. Sci. Exploration 2 (1982), 79-82. | MR

[23] Zhou, D.: On some problems on oscillation of functional differential equations of first order. J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434-442. | JFM

Cité par Sources :