Oscillation of deviating differential equations
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Consider the first-order linear delay (advanced) differential equation$$ x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0}, $$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) $$ and $$ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg ) $$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
DOI : 10.21136/MB.2020.0002-19
Classification : 34K06, 34K11
Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
@article{10_21136_MB_2020_0002_19,
     author = {Chatzarakis, George E.},
     title = {Oscillation of deviating differential equations},
     journal = {Mathematica Bohemica},
     pages = {435--448},
     publisher = {mathdoc},
     volume = {145},
     number = {4},
     year = {2020},
     doi = {10.21136/MB.2020.0002-19},
     mrnumber = {4221844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
TI  - Oscillation of deviating differential equations
JO  - Mathematica Bohemica
PY  - 2020
SP  - 435
EP  - 448
VL  - 145
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/
DO  - 10.21136/MB.2020.0002-19
LA  - en
ID  - 10_21136_MB_2020_0002_19
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%T Oscillation of deviating differential equations
%J Mathematica Bohemica
%D 2020
%P 435-448
%V 145
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/
%R 10.21136/MB.2020.0002-19
%G en
%F 10_21136_MB_2020_0002_19
Chatzarakis, George E. Oscillation of deviating differential equations. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 435-448. doi : 10.21136/MB.2020.0002-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0002-19/

Cité par Sources :