Distributive lattices have the intersection property
Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
DOI : 10.21136/MB.2019.0156-18
Classification : 06D05
Keywords: distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
@article{10_21136_MB_2019_0156_18,
     author = {M\"uhle, Henri},
     title = {Distributive lattices have the intersection property},
     journal = {Mathematica Bohemica},
     pages = {7--17},
     year = {2021},
     volume = {146},
     number = {1},
     doi = {10.21136/MB.2019.0156-18},
     mrnumber = {4227308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/}
}
TY  - JOUR
AU  - Mühle, Henri
TI  - Distributive lattices have the intersection property
JO  - Mathematica Bohemica
PY  - 2021
SP  - 7
EP  - 17
VL  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/
DO  - 10.21136/MB.2019.0156-18
LA  - en
ID  - 10_21136_MB_2019_0156_18
ER  - 
%0 Journal Article
%A Mühle, Henri
%T Distributive lattices have the intersection property
%J Mathematica Bohemica
%D 2021
%P 7-17
%V 146
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/
%R 10.21136/MB.2019.0156-18
%G en
%F 10_21136_MB_2019_0156_18
Mühle, Henri. Distributive lattices have the intersection property. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17. doi: 10.21136/MB.2019.0156-18

[1] Bancroft, E.: The shard intersection order on permutations. Available at (2011). | arXiv

[2] Barnard, E.: The canonical join complex. Electron. J. Comb. 26 (2019), Research paper P1.24, 25 pages. | MR | JFM

[3] Birkhoff, G.: Applications of lattice algebra. Proc. Camb. Philos. Soc. 30 (1934), 115-122. | DOI | JFM

[4] Birkhoff, G.: Rings of sets. Duke Math. J. 3 (1937), 443-454. | DOI | MR | JFM

[5] Clifton, A., Dillery, P., Garver, A.: The canonical join complex for biclosed sets. Algebra Univers. 79 (2018), Article No. 84, 29 pages. | DOI | MR | JFM

[6] Davey, B. A., Poguntke, W., Rival, I.: A characterization of semi-distributivity. Algebra Univers. 5 (1975), 72-75. | DOI | MR | JFM

[7] Day, A.: Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices. Can. J. Math. 31 (1979), 69-78. | DOI | MR | JFM

[8] Day, A.: Congruence normality: The characterization of the doubling class of convex sets. Algebra Univers. 31 (1994), 397-406. | DOI | MR | JFM

[9] Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Comb. 9 (2002), Research paper R24, 23 pages. | MR | JFM

[10] Freese, R., Ježek, J., Nation, J. B.: Free Lattices. Mathematical Surveys and Monographs 42. AMS, Providence (1995). | DOI | MR | JFM

[11] Garver, A., McConville, T.: Enumerative properties of Grid-Associahedra. Available at (2017). | arXiv | MR

[12] Garver, A., McConville, T.: Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions. J. Comb. Theory, Ser. A 158 (2018), 126-175. | DOI | MR | JFM

[13] Grätzer, G.: General Lattice Theory. Pure and Applied Mathematics 75. Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1978). | DOI | MR | JFM

[14] Mühle, H.: Noncrossing partitions, Tamari lattices, and parabolic quotients of the symmetric group. Available at (2018). | arXiv | MR

[15] Mühle, H.: The core label order of a congruence-uniform lattice. Algebra Univers. 80 (2019), Article No. 10, 22 pages. | DOI | MR | JFM

[16] Petersen, T. K.: On the shard intersection order of a Coxeter group. SIAM J. Discrete Math. 27 (2013), 1880-1912. | DOI | MR | JFM

[17] Reading, N.: Noncrossing partitions and the shard intersection order. J. Algebr. Comb. 33 (2011), 483-530. | DOI | MR | JFM

[18] Reading, N.: Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math. 29 (2015), 736-750. | DOI | MR | JFM

[19] Reading, N.: Lattice theory of the poset of regions. Lattice Theory: Special Topics and Applications. Volume 2 Birkhäuser/Springer, Basel (2016), 399-487 G. Grätzer et al. | DOI | MR | JFM

[20] Whitman, P. M.: Free lattices. Ann. Math. (2) 42 (1941), 325-330. | DOI | MR | JFM

[21] Whitman, P. M.: Free lattices. II. Ann. Math. (2) 43 (1942), 104-115. | DOI | MR | JFM

Cité par Sources :