Keywords: distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
@article{10_21136_MB_2019_0156_18,
author = {M\"uhle, Henri},
title = {Distributive lattices have the intersection property},
journal = {Mathematica Bohemica},
pages = {7--17},
year = {2021},
volume = {146},
number = {1},
doi = {10.21136/MB.2019.0156-18},
mrnumber = {4227308},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/}
}
Mühle, Henri. Distributive lattices have the intersection property. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17. doi: 10.21136/MB.2019.0156-18
[1] Bancroft, E.: The shard intersection order on permutations. Available at (2011). | arXiv
[2] Barnard, E.: The canonical join complex. Electron. J. Comb. 26 (2019), Research paper P1.24, 25 pages. | MR | JFM
[3] Birkhoff, G.: Applications of lattice algebra. Proc. Camb. Philos. Soc. 30 (1934), 115-122. | DOI | JFM
[4] Birkhoff, G.: Rings of sets. Duke Math. J. 3 (1937), 443-454. | DOI | MR | JFM
[5] Clifton, A., Dillery, P., Garver, A.: The canonical join complex for biclosed sets. Algebra Univers. 79 (2018), Article No. 84, 29 pages. | DOI | MR | JFM
[6] Davey, B. A., Poguntke, W., Rival, I.: A characterization of semi-distributivity. Algebra Univers. 5 (1975), 72-75. | DOI | MR | JFM
[7] Day, A.: Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices. Can. J. Math. 31 (1979), 69-78. | DOI | MR | JFM
[8] Day, A.: Congruence normality: The characterization of the doubling class of convex sets. Algebra Univers. 31 (1994), 397-406. | DOI | MR | JFM
[9] Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Comb. 9 (2002), Research paper R24, 23 pages. | MR | JFM
[10] Freese, R., Ježek, J., Nation, J. B.: Free Lattices. Mathematical Surveys and Monographs 42. AMS, Providence (1995). | DOI | MR | JFM
[11] Garver, A., McConville, T.: Enumerative properties of Grid-Associahedra. Available at (2017). | arXiv | MR
[12] Garver, A., McConville, T.: Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions. J. Comb. Theory, Ser. A 158 (2018), 126-175. | DOI | MR | JFM
[13] Grätzer, G.: General Lattice Theory. Pure and Applied Mathematics 75. Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1978). | DOI | MR | JFM
[14] Mühle, H.: Noncrossing partitions, Tamari lattices, and parabolic quotients of the symmetric group. Available at (2018). | arXiv | MR
[15] Mühle, H.: The core label order of a congruence-uniform lattice. Algebra Univers. 80 (2019), Article No. 10, 22 pages. | DOI | MR | JFM
[16] Petersen, T. K.: On the shard intersection order of a Coxeter group. SIAM J. Discrete Math. 27 (2013), 1880-1912. | DOI | MR | JFM
[17] Reading, N.: Noncrossing partitions and the shard intersection order. J. Algebr. Comb. 33 (2011), 483-530. | DOI | MR | JFM
[18] Reading, N.: Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math. 29 (2015), 736-750. | DOI | MR | JFM
[19] Reading, N.: Lattice theory of the poset of regions. Lattice Theory: Special Topics and Applications. Volume 2 Birkhäuser/Springer, Basel (2016), 399-487 G. Grätzer et al. | DOI | MR | JFM
[20] Whitman, P. M.: Free lattices. Ann. Math. (2) 42 (1941), 325-330. | DOI | MR | JFM
[21] Whitman, P. M.: Free lattices. II. Ann. Math. (2) 43 (1942), 104-115. | DOI | MR | JFM
Cité par Sources :