Distributive lattices have the intersection property
Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
DOI : 10.21136/MB.2019.0156-18
Classification : 06D05
Keywords: distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
@article{10_21136_MB_2019_0156_18,
     author = {M\"uhle, Henri},
     title = {Distributive lattices have the intersection property},
     journal = {Mathematica Bohemica},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2021},
     doi = {10.21136/MB.2019.0156-18},
     mrnumber = {4227308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/}
}
TY  - JOUR
AU  - Mühle, Henri
TI  - Distributive lattices have the intersection property
JO  - Mathematica Bohemica
PY  - 2021
SP  - 7
EP  - 17
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/
DO  - 10.21136/MB.2019.0156-18
LA  - en
ID  - 10_21136_MB_2019_0156_18
ER  - 
%0 Journal Article
%A Mühle, Henri
%T Distributive lattices have the intersection property
%J Mathematica Bohemica
%D 2021
%P 7-17
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/
%R 10.21136/MB.2019.0156-18
%G en
%F 10_21136_MB_2019_0156_18
Mühle, Henri. Distributive lattices have the intersection property. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17. doi : 10.21136/MB.2019.0156-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/

Cité par Sources :