Distributive lattices have the intersection property
Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
DOI :
10.21136/MB.2019.0156-18
Classification :
06D05
Keywords: distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
Keywords: distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
@article{10_21136_MB_2019_0156_18,
author = {M\"uhle, Henri},
title = {Distributive lattices have the intersection property},
journal = {Mathematica Bohemica},
pages = {7--17},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2021},
doi = {10.21136/MB.2019.0156-18},
mrnumber = {4227308},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/}
}
TY - JOUR AU - Mühle, Henri TI - Distributive lattices have the intersection property JO - Mathematica Bohemica PY - 2021 SP - 7 EP - 17 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0156-18/ DO - 10.21136/MB.2019.0156-18 LA - en ID - 10_21136_MB_2019_0156_18 ER -
Mühle, Henri. Distributive lattices have the intersection property. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 7-17. doi: 10.21136/MB.2019.0156-18
Cité par Sources :