Covariantization of quantized calculi over quantum groups
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 415-433
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional.
We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional.
DOI :
10.21136/MB.2019.0142-18
Classification :
58B32, 81Q30
Keywords: Hopf algebra; quantum group; covariant first order differential calculus; quantized calculus; Dirac operator
Keywords: Hopf algebra; quantum group; covariant first order differential calculus; quantized calculus; Dirac operator
@article{10_21136_MB_2019_0142_18,
author = {Akrami, Seyed Ebrahim and Farzi, Shervin},
title = {Covariantization of quantized calculi over quantum groups},
journal = {Mathematica Bohemica},
pages = {415--433},
year = {2020},
volume = {145},
number = {4},
doi = {10.21136/MB.2019.0142-18},
mrnumber = {4221843},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/}
}
TY - JOUR AU - Akrami, Seyed Ebrahim AU - Farzi, Shervin TI - Covariantization of quantized calculi over quantum groups JO - Mathematica Bohemica PY - 2020 SP - 415 EP - 433 VL - 145 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/ DO - 10.21136/MB.2019.0142-18 LA - en ID - 10_21136_MB_2019_0142_18 ER -
%0 Journal Article %A Akrami, Seyed Ebrahim %A Farzi, Shervin %T Covariantization of quantized calculi over quantum groups %J Mathematica Bohemica %D 2020 %P 415-433 %V 145 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/ %R 10.21136/MB.2019.0142-18 %G en %F 10_21136_MB_2019_0142_18
Akrami, Seyed Ebrahim; Farzi, Shervin. Covariantization of quantized calculi over quantum groups. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 415-433. doi: 10.21136/MB.2019.0142-18
Cité par Sources :