Covariantization of quantized calculi over quantum groups
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 415-433
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional.
We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional.
DOI : 10.21136/MB.2019.0142-18
Classification : 58B32, 81Q30
Keywords: Hopf algebra; quantum group; covariant first order differential calculus; quantized calculus; Dirac operator
@article{10_21136_MB_2019_0142_18,
     author = {Akrami, Seyed Ebrahim and Farzi, Shervin},
     title = {Covariantization of quantized calculi over quantum groups},
     journal = {Mathematica Bohemica},
     pages = {415--433},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2019.0142-18},
     mrnumber = {4221843},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/}
}
TY  - JOUR
AU  - Akrami, Seyed Ebrahim
AU  - Farzi, Shervin
TI  - Covariantization of quantized calculi over quantum groups
JO  - Mathematica Bohemica
PY  - 2020
SP  - 415
EP  - 433
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/
DO  - 10.21136/MB.2019.0142-18
LA  - en
ID  - 10_21136_MB_2019_0142_18
ER  - 
%0 Journal Article
%A Akrami, Seyed Ebrahim
%A Farzi, Shervin
%T Covariantization of quantized calculi over quantum groups
%J Mathematica Bohemica
%D 2020
%P 415-433
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0142-18/
%R 10.21136/MB.2019.0142-18
%G en
%F 10_21136_MB_2019_0142_18
Akrami, Seyed Ebrahim; Farzi, Shervin. Covariantization of quantized calculi over quantum groups. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 415-433. doi: 10.21136/MB.2019.0142-18

[1] Bibikov, P. N., Kulish, P. P.: Dirac operators on the quantum group ${\rm SU}(2)$ and the quantum sphere. J. Math. Sci., New York 100 (1997), 2039-2050. | DOI | MR | JFM

[2] Brzeziński, T., Majid, S.: A class of bicovariant differential calculi on Hopf algebras. Lett. Math. Phys. 26 (1992), 67-78. | DOI | MR | JFM

[3] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994). | MR | JFM

[4] Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin (1997). | DOI | MR | JFM

[5] Majid, S.: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (1995). | DOI | MR | JFM

[6] Majid, S.: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225 (2002), 131-170. | DOI | MR | JFM

[7] Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122 (1989), 125-170. | DOI | MR | JFM

Cité par Sources :