Some monounary algebras with EKP
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 401-414
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An algebra $\cal A$ is said to have the endomorphism kernel property (EKP) if every congruence on $\cal A$ is the kernel of some endomorphism of $\cal A$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.
An algebra $\cal A$ is said to have the endomorphism kernel property (EKP) if every congruence on $\cal A$ is the kernel of some endomorphism of $\cal A$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.
DOI : 10.21136/MB.2019.0128-18
Classification : 08A30, 08A35, 08A60
Keywords: monounary algebra; endomorphism; congruence; kernel
@article{10_21136_MB_2019_0128_18,
     author = {Halu\v{s}kov\'a, Em{\'\i}lia},
     title = {Some monounary algebras with {EKP}},
     journal = {Mathematica Bohemica},
     pages = {401--414},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2019.0128-18},
     mrnumber = {4221842},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0128-18/}
}
TY  - JOUR
AU  - Halušková, Emília
TI  - Some monounary algebras with EKP
JO  - Mathematica Bohemica
PY  - 2020
SP  - 401
EP  - 414
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0128-18/
DO  - 10.21136/MB.2019.0128-18
LA  - en
ID  - 10_21136_MB_2019_0128_18
ER  - 
%0 Journal Article
%A Halušková, Emília
%T Some monounary algebras with EKP
%J Mathematica Bohemica
%D 2020
%P 401-414
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0128-18/
%R 10.21136/MB.2019.0128-18
%G en
%F 10_21136_MB_2019_0128_18
Halušková, Emília. Some monounary algebras with EKP. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 401-414. doi: 10.21136/MB.2019.0128-18

[1] Araújo, J., Konieczny, J.: Centralizers in the full transformation semigroup. Semigroup Forum 86 (2013), 1-31. | DOI | MR | JFM

[2] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and De Morgan algebras. Commun. Algebra 32 (2004), 2225-2242. | DOI | MR | JFM

[3] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras. Sci. Math. Jpn. 76 (2013), 227-234. | MR | JFM

[4] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. | DOI | MR | JFM

[5] Černegová, M., Jakubíková-Studenovská, D.: Reconstructability of a monounary algebra from its second centralizer. Commun. Algebra 45 (2017), 4656-4666. | DOI | MR | JFM

[6] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. | MR | JFM

[7] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. | DOI | MR | JFM

[8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras. JP J. Algebra Number Theory Appl. 14 (2009), 51-64. | MR | JFM

[9] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$. JP J. Algebra Number Theory Appl. 25 (2012), 69-90. | MR | JFM

[10] Guričan, J.: A note on the endomorphism kernel property. JP J. Algebra Number Theory Appl. 33 (2014), 133-139. | JFM

[11] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. | JFM

[12] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. | DOI | MR | JFM

[13] Halušková, E.: Strong endomorphism kernel property for monounary algebras. Math. Bohem. 143 (2018), 161-171. | DOI | MR | JFM

[14] Jakubíková-Studenovská, D., Pócs, J.: Cardinality of retracts of monounary algebras. Czech. Math. J. 58 (2008), 469-479. | DOI | MR | JFM

[15] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. Pavol Josef Šafárik University, Košice (2009). | JFM

[16] Jakubíková-Studenovská, D., Potpinková, K.: The endomorphism spectrum of a monounary algebra. Math. Slovaca 64 (2014), 675-690. | DOI | MR | JFM

[17] Jakubíková-Studenovská, D., Šuličová, M.: Centralizers of a monounary algebra. Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. | DOI | MR | JFM

[18] Jakubíková-Studenovská, D., Šuličová, M.: Green's relations in the commutative centralizers of monounary algebras. Demonstr. Math. 48 (2015), 536-545. | DOI | MR | JFM

[19] Jónsson, B.: Topics in Universal Algebra. Lecture Notes in Mathematics 250. Springer, Berlin (1972). | DOI | MR | JFM

[20] Konieczny, J.: Green's relations and regularity in centralizers of permutations. Glasg. Math. J. 41 (1999), 45-57. | DOI | MR | JFM

[21] Konieczny, J.: Second centralizers of partial transformations. Czech. Math. J. 51 (2001), 873-888. | DOI | MR | JFM

[22] Konieczny, J.: Centralizers in the semigroup of injective transformations on an infinite set. Bull. Aust. Math. Soc. 82 (2010), 305-321. | DOI | MR | JFM

[23] Konieczny, J.: Infinite injective transformations whose centralizers have simple structure. Cent. Eur. J. Math. 9 (2011), 23-35. | DOI | MR | JFM

[24] Novotný, M., Kopeček, O., Chvalina, J.: Homomorphic Transformations: Why and Possible Ways to How. Masaryk University, Brno (2012). | DOI

[25] Pitkethly, J., Davey, B.: Dualisability. Unary Algebras and Beyond. Advances in Mathematics 9. Springer, New York (2005). | DOI | MR | JFM

[26] Popov, B. V., Kovaleva, O. V.: On a characterization of monounary algebras by their endomorphism semigroups. Semigroup Forum 73 (2006), 444-456. | DOI | MR | JFM

[27] Pozdnyakova, I. V.: Semigroups of endomorphisms of some infinite monounary algebras. Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. | DOI | MR | JFM

Cité par Sources :