Keywords: regulated function; bounded variation; function with values in a Banach space; $\varphi $-variation; relative compactness; equiregulated function
@article{10_21136_MB_2019_0124_19,
author = {Fra\v{n}kov\'a, Dana},
title = {Regulated functions with values in {Banach} space},
journal = {Mathematica Bohemica},
pages = {437--456},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2019.0124-19},
mrnumber = {4047346},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0124-19/}
}
Fraňková, Dana. Regulated functions with values in Banach space. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 437-456. doi: 10.21136/MB.2019.0124-19
[1] Brokate, M., Krejčí, P.: Duality in the space of regulated functions and the play operator. Math. Z. 245 (2003), 667-688. | DOI | MR | JFM
[2] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | MR | JFM
[3] Hönig, C. S.: Volterra-Stieltjes Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica (56), North-Holland Publishing Company, Amsterdam-Oxford; American Elsevier Publishing Company, New York (1975). | MR | JFM
[4] Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1964). | MR | JFM
[5] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. | DOI | MR | JFM
Cité par Sources :