Some results on top local cohomology modules with respect to a pair of ideals
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 377-386
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak m)$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$.
Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak m)$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$.
DOI : 10.21136/MB.2019.0124-18
Classification : 13B22, 13D45, 13E05
Keywords: Artinian module; integral closure; local cohomology; quasi-unmixed module
@article{10_21136_MB_2019_0124_18,
     author = {Jahandoust, Saeed and Naghipour, Reza},
     title = {Some results on top local cohomology modules with respect to a pair of ideals},
     journal = {Mathematica Bohemica},
     pages = {377--386},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2019.0124-18},
     mrnumber = {4221840},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0124-18/}
}
TY  - JOUR
AU  - Jahandoust, Saeed
AU  - Naghipour, Reza
TI  - Some results on top local cohomology modules with respect to a pair of ideals
JO  - Mathematica Bohemica
PY  - 2020
SP  - 377
EP  - 386
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0124-18/
DO  - 10.21136/MB.2019.0124-18
LA  - en
ID  - 10_21136_MB_2019_0124_18
ER  - 
%0 Journal Article
%A Jahandoust, Saeed
%A Naghipour, Reza
%T Some results on top local cohomology modules with respect to a pair of ideals
%J Mathematica Bohemica
%D 2020
%P 377-386
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0124-18/
%R 10.21136/MB.2019.0124-18
%G en
%F 10_21136_MB_2019_0124_18
Jahandoust, Saeed; Naghipour, Reza. Some results on top local cohomology modules with respect to a pair of ideals. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 377-386. doi: 10.21136/MB.2019.0124-18

[1] Brodmann, M. P.: Asymptotic stability of $ Ass(M/I^nM)$. Proc. Am. Math. Soc. 74 (1979), 16-18. | DOI | MR | JFM

[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[4] Chu, L.: Top local cohomology modules with respect to a pair of ideals. Proc. Am. Math. Soc. 139 (2011), 777-782. | DOI | MR | JFM

[5] Chu, L., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. | DOI | MR | JFM

[6] Divaani-Aazar, K.: Vanishing of the top local cohomology modules over Noetherian rings. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 23-35. | DOI | MR | JFM

[7] Katz, D., Jr., L. J. Ratliff: $u$-essential prime divisors and sequences over an ideal. Nagoya Math. J. 103 (1986), 39-66. | DOI | MR | JFM

[8] Martí-Farré, J.: Symbolic powers and local cohomology. Mathematika 42 (1995),182-187. | DOI | MR | JFM

[9] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). | DOI | MR | JFM

[10] McAdam, S.: Quintasymptotic primes and four results of Schenzel. J. Pure Appl. Algebra 47 (1987), 283-298. | DOI | MR | JFM

[11] Merighe, L. C., Pérez, V. H. Jorge: On a question of D. Rees on classical integral closure and integral closure relative to an Artinian module. (to appear) in J. Algebra Appl (2019). | DOI | MR

[12] Naghipour, R., Sedghi, M.: A characterization of Cohen-Macaulay modules and local cohomology. Arch. Math. 87 (2006), 303-308. | DOI | MR | JFM

[13] Sharp, R. Y., Taherizadeh, A.-J.: Reductions and integral closures of ideals relative to an Artinian module. J. Lond. Math. Soc., II. Ser. 37 (1988), 203-218. | DOI | MR | JFM

[14] Sharp, R. Y., Tiraş, Y., Yassi, M.: Integral closures of ideals relative to local cohomology modules over quasi-unmixed local rings. J. Lond. Math. Soc., II. Ser. 42 (1990), 385-392. | DOI | MR | JFM

[15] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). | MR | JFM

[16] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213 (2009), 582-600. | DOI | MR | JFM

Cité par Sources :