Keywords: meromorphic function; Nevanlinna theory; annulus
@article{10_21136_MB_2019_0121_17,
author = {Si, Duc Quang and Tran, An Hai},
title = {Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity},
journal = {Mathematica Bohemica},
pages = {163--176},
year = {2020},
volume = {145},
number = {2},
doi = {10.21136/MB.2019.0121-17},
mrnumber = {4221827},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/}
}
TY - JOUR AU - Si, Duc Quang AU - Tran, An Hai TI - Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity JO - Mathematica Bohemica PY - 2020 SP - 163 EP - 176 VL - 145 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/ DO - 10.21136/MB.2019.0121-17 LA - en ID - 10_21136_MB_2019_0121_17 ER -
%0 Journal Article %A Si, Duc Quang %A Tran, An Hai %T Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity %J Mathematica Bohemica %D 2020 %P 163-176 %V 145 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/ %R 10.21136/MB.2019.0121-17 %G en %F 10_21136_MB_2019_0121_17
Si, Duc Quang; Tran, An Hai. Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 163-176. doi: 10.21136/MB.2019.0121-17
[1] Banerjee, A.: Weighted sharing of a small function by a meromorphic function and its derivative. Comput. Math. Appl. 53 (2007), 1750-1761. | DOI | MR | JFM
[2] Bhoosnurmath, S. S., Dyavanal, R. S.: Uniqueness and value-sharing of meromorphic functions. Comput. Math. Appl. 53 (2007), 1191-1205. | DOI | MR | JFM
[3] Cao, T.-B., Deng, Z.-S.: On the uniqueness of meromorphic functions that share three or two finite sets on annuli. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203-220. | DOI | MR | JFM
[4] Cao, T.-B., Yi, H.-X., Xu, H.-Y.: On the multiple values and uniqueness of meromorphic functions on annuli. Comput. Math. Appl. 58 (2009), 1457-1465. | DOI | MR | JFM
[5] Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory. Nagoya Math. J. 152 (1998), 131-152. | DOI | MR | JFM
[6] Gundersen, G. G.: Meromorphic functions that share four values. Trans. Am. Math. Soc. 277 (1983), 545-567. | DOI | MR | JFM
[7] Ishizaki, K., Toda, N.: Unicity theorems for meromorphic functions sharing four small functions. Kodai Math. J. 21 (1998), 350-371. | DOI | MR | JFM
[8] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. | MR | JFM
[9] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. II. Mat. Stud. 24 (2005), 57-68. | MR | JFM
[10] Li, X., Yi, H., Hu, H.: Uniqueness results of meromorphic functions whose derivatives share four small functions. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593-1606. | DOI | MR | JFM
[11] Lund, M., Ye, Z.: Nevanlinna theory of meromorphic functions on annuli. Sci. China, Math. 53 (2010), 547-554. | DOI | MR | JFM
[12] Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48 German (1926), 367-391. | DOI | MR | JFM
[13] Quang, S. D.: Unicity of meromorphic functions sharing some small functions regardless of multiplicities. Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. | DOI | MR | JFM
[14] Quang, S. D.: Finiteness problem of meromorphic functions sharing four small functions regardless of multiplicities. Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. | DOI | MR | JFM
Cité par Sources :