Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 163-176.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb A({R_0})$ share four distinct values regardless of multiplicity and have the {\it complete identity set} of positive counting function, then $f_1=\nobreak f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb C$ sharing four values.
DOI : 10.21136/MB.2019.0121-17
Classification : 30D35, 32H30
Keywords: meromorphic function; Nevanlinna theory; annulus
@article{10_21136_MB_2019_0121_17,
     author = {Si, Duc Quang and Tran, An Hai},
     title = {Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity},
     journal = {Mathematica Bohemica},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {2020},
     doi = {10.21136/MB.2019.0121-17},
     mrnumber = {4221827},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/}
}
TY  - JOUR
AU  - Si, Duc Quang
AU  - Tran, An Hai
TI  - Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
JO  - Mathematica Bohemica
PY  - 2020
SP  - 163
EP  - 176
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/
DO  - 10.21136/MB.2019.0121-17
LA  - en
ID  - 10_21136_MB_2019_0121_17
ER  - 
%0 Journal Article
%A Si, Duc Quang
%A Tran, An Hai
%T Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
%J Mathematica Bohemica
%D 2020
%P 163-176
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/
%R 10.21136/MB.2019.0121-17
%G en
%F 10_21136_MB_2019_0121_17
Si, Duc Quang; Tran, An Hai. Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 163-176. doi : 10.21136/MB.2019.0121-17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/

Cité par Sources :