Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 163-176
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb A({R_0})$ share four distinct values regardless of multiplicity and have the {\it complete identity set} of positive counting function, then $f_1=\nobreak f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb C$ sharing four values.
This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb A({R_0})$ share four distinct values regardless of multiplicity and have the {\it complete identity set} of positive counting function, then $f_1=\nobreak f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb C$ sharing four values.
DOI : 10.21136/MB.2019.0121-17
Classification : 30D35, 32H30
Keywords: meromorphic function; Nevanlinna theory; annulus
@article{10_21136_MB_2019_0121_17,
     author = {Si, Duc Quang and Tran, An Hai},
     title = {Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity},
     journal = {Mathematica Bohemica},
     pages = {163--176},
     year = {2020},
     volume = {145},
     number = {2},
     doi = {10.21136/MB.2019.0121-17},
     mrnumber = {4221827},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/}
}
TY  - JOUR
AU  - Si, Duc Quang
AU  - Tran, An Hai
TI  - Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
JO  - Mathematica Bohemica
PY  - 2020
SP  - 163
EP  - 176
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/
DO  - 10.21136/MB.2019.0121-17
LA  - en
ID  - 10_21136_MB_2019_0121_17
ER  - 
%0 Journal Article
%A Si, Duc Quang
%A Tran, An Hai
%T Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
%J Mathematica Bohemica
%D 2020
%P 163-176
%V 145
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0121-17/
%R 10.21136/MB.2019.0121-17
%G en
%F 10_21136_MB_2019_0121_17
Si, Duc Quang; Tran, An Hai. Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 163-176. doi: 10.21136/MB.2019.0121-17

[1] Banerjee, A.: Weighted sharing of a small function by a meromorphic function and its derivative. Comput. Math. Appl. 53 (2007), 1750-1761. | DOI | MR | JFM

[2] Bhoosnurmath, S. S., Dyavanal, R. S.: Uniqueness and value-sharing of meromorphic functions. Comput. Math. Appl. 53 (2007), 1191-1205. | DOI | MR | JFM

[3] Cao, T.-B., Deng, Z.-S.: On the uniqueness of meromorphic functions that share three or two finite sets on annuli. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203-220. | DOI | MR | JFM

[4] Cao, T.-B., Yi, H.-X., Xu, H.-Y.: On the multiple values and uniqueness of meromorphic functions on annuli. Comput. Math. Appl. 58 (2009), 1457-1465. | DOI | MR | JFM

[5] Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory. Nagoya Math. J. 152 (1998), 131-152. | DOI | MR | JFM

[6] Gundersen, G. G.: Meromorphic functions that share four values. Trans. Am. Math. Soc. 277 (1983), 545-567. | DOI | MR | JFM

[7] Ishizaki, K., Toda, N.: Unicity theorems for meromorphic functions sharing four small functions. Kodai Math. J. 21 (1998), 350-371. | DOI | MR | JFM

[8] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. | MR | JFM

[9] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. II. Mat. Stud. 24 (2005), 57-68. | MR | JFM

[10] Li, X., Yi, H., Hu, H.: Uniqueness results of meromorphic functions whose derivatives share four small functions. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593-1606. | DOI | MR | JFM

[11] Lund, M., Ye, Z.: Nevanlinna theory of meromorphic functions on annuli. Sci. China, Math. 53 (2010), 547-554. | DOI | MR | JFM

[12] Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48 German (1926), 367-391. | DOI | MR | JFM

[13] Quang, S. D.: Unicity of meromorphic functions sharing some small functions regardless of multiplicities. Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. | DOI | MR | JFM

[14] Quang, S. D.: Finiteness problem of meromorphic functions sharing four small functions regardless of multiplicities. Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. | DOI | MR | JFM

Cité par Sources :