On the class of b-L-weakly and order M-weakly compact operators
Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 255-264
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.
In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.
DOI : 10.21136/MB.2019.0116-18
Classification : 46B25, 46B42, 47B60, 47B65
Keywords: L-weakly compact operator; M-weakly compact operator; b-order bounded operator; b-weakly compact operator; b-L-weakly compact operator; order M-weakly compact operator; KB-space
@article{10_21136_MB_2019_0116_18,
     author = {Lhaimer, Driss and Moussa, Mohammed and Bouras, Khalid},
     title = {On the class of {b-L-weakly} and order {M-weakly} compact operators},
     journal = {Mathematica Bohemica},
     pages = {255--264},
     year = {2020},
     volume = {145},
     number = {3},
     doi = {10.21136/MB.2019.0116-18},
     mrnumber = {4221833},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-18/}
}
TY  - JOUR
AU  - Lhaimer, Driss
AU  - Moussa, Mohammed
AU  - Bouras, Khalid
TI  - On the class of b-L-weakly and order M-weakly compact operators
JO  - Mathematica Bohemica
PY  - 2020
SP  - 255
EP  - 264
VL  - 145
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-18/
DO  - 10.21136/MB.2019.0116-18
LA  - en
ID  - 10_21136_MB_2019_0116_18
ER  - 
%0 Journal Article
%A Lhaimer, Driss
%A Moussa, Mohammed
%A Bouras, Khalid
%T On the class of b-L-weakly and order M-weakly compact operators
%J Mathematica Bohemica
%D 2020
%P 255-264
%V 145
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-18/
%R 10.21136/MB.2019.0116-18
%G en
%F 10_21136_MB_2019_0116_18
Lhaimer, Driss; Moussa, Mohammed; Bouras, Khalid. On the class of b-L-weakly and order M-weakly compact operators. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 255-264. doi: 10.21136/MB.2019.0116-18

[1] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices. Proc. Am. Math. Soc. 83 (1981), 573-578. | DOI | MR | JFM

[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). | DOI | MR | JFM

[3] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity 7 (2003), 135-139. | DOI | MR | JFM

[4] Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-$b$. Czech. Math. J. 56 (2006), 765-772. | DOI | MR | JFM

[5] Dodds, P. G.: $o$-weakly compact mappings of Riesz spaces. Trans. Am. Math. Soc. 214 (1975), 389-402. | DOI | MR | JFM

[6] Meyer-Nieberg, P.: Über Klassen schwach kompakter Operatoren in Banachverbanden. Math. Z. 138 (1974), 145-159 German. | DOI | MR | JFM

[7] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). | DOI | MR | JFM

[8] Zaanen, A. C.: Riesz Spaces II. North-Holland Mathematical Library, Volume 30. North-Holland, Amsterdam (1983). | DOI | MR | JFM

Cité par Sources :