An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 65-70
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Here we present abstract formulations of two theorems of Solecki which deal with some generalizations of the classical Vitali theorem on nonmeasurable sets in spaces with transformation groups.
Here we present abstract formulations of two theorems of Solecki which deal with some generalizations of the classical Vitali theorem on nonmeasurable sets in spaces with transformation groups.
DOI : 10.21136/MB.2019.0116-17
Classification : 28A05, 28D05
Keywords: spaces with transformation groups; $k$-additive measurable structure; $k$-small system; upper semicontinuous $k$-small system; $k$-additive algebra admissible with respect to a $k$-small system
@article{10_21136_MB_2019_0116_17,
     author = {Basu, Sanjib and Sen, Debasish},
     title = {An abstract and generalized approach to the {Vitali} theorem on nonmeasurable sets},
     journal = {Mathematica Bohemica},
     pages = {65--70},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2019.0116-17},
     mrnumber = {4088693},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/}
}
TY  - JOUR
AU  - Basu, Sanjib
AU  - Sen, Debasish
TI  - An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
JO  - Mathematica Bohemica
PY  - 2020
SP  - 65
EP  - 70
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/
DO  - 10.21136/MB.2019.0116-17
LA  - en
ID  - 10_21136_MB_2019_0116_17
ER  - 
%0 Journal Article
%A Basu, Sanjib
%A Sen, Debasish
%T An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
%J Mathematica Bohemica
%D 2020
%P 65-70
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/
%R 10.21136/MB.2019.0116-17
%G en
%F 10_21136_MB_2019_0116_17
Basu, Sanjib; Sen, Debasish. An abstract and generalized approach to the Vitali theorem on nonmeasurable sets. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 65-70. doi: 10.21136/MB.2019.0116-17

[1] Erdős, P., Mauldin, R. D.: The nonexistence of certain invariant measures. Proc. Am. Math. Soc. 59 (1976), 321-322. | DOI | MR | JFM

[2] Johnson, R. A., Niewiarowski, J., Świątkowski, T.: Small systems convergence and metrizability. Proc. Am. Math. Soc. 103 (1988), 105-112. | DOI | MR | JFM

[3] Kharazishvili, A. B.: On some types of invariant measures. Sov. Math., Dokl. 16 (1975), 681-684 English. Russian original Translated from Dokl. Akad. Nauk SSSR 222 1975 538-540. | MR | JFM

[4] Kharazishvili, A. B.: Transformations Groups and Invariant Measures. Set-Theoretic Aspects. World Scientific, Singapore (1998). | DOI | MR | JFM

[5] Niewiarowski, J.: Convergence of sequences of real functions with respect to small systems. Math. Slovaca 38 (1988), 333-340. | MR | JFM

[6] Pelc, A.: Invariant measures and ideals on discrete groups. Diss. Math. 255 (1986), 47 pages. | MR | JFM

[7] Riečan, B.: Abstract formulation of some theorems of measure theory. Mat.-Fyz. Čas., Slovensk. Akad. Vied 16 (1966), 268-273. | MR | JFM

[8] Riečan, B.: Abstract formulation of some theorems of measure theory. II. Mat. Čas., Slovensk. Akad. Vied 19 (1969), 138-144. | MR | JFM

[9] Riečan, B.: A note on measurable sets. Mat. Čas., Slovensk. Akad. Vied 21 (1971), 264-268. | MR | JFM

[10] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Mathematics and Its Applications 411. Kluwer Academic Publisher, Dordrecht (1997). | DOI | MR | JFM

[11] Riečanová, Z.: On an abstract formulation of regularity. Mat. Čas., Slovensk. Akad. Vied 21 (1971), 117-123. | MR | JFM

[12] Solecki, S.: Measurability properties of sets of Vitali's type. Proc. Am. Math. Soc. 119 (1993), 897-902. | DOI | MR | JFM

[13] Solecki, S.: On sets nonmeasurable with respect to invariant measures. Proc. Am. Math. Soc. 119 (1993), 115-124. | DOI | MR | JFM

[14] Vitali, G.: Sul problema della misura dei gruppi di punti di una retta. Nota. Gamberini e Parmeggiani, Bologna (1905), Italian \99999JFM99999 36.0586.03.

Cité par Sources :