An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 65-70.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Here we present abstract formulations of two theorems of Solecki which deal with some generalizations of the classical Vitali theorem on nonmeasurable sets in spaces with transformation groups.
DOI : 10.21136/MB.2019.0116-17
Classification : 28A05, 28D05
Keywords: spaces with transformation groups; $k$-additive measurable structure; $k$-small system; upper semicontinuous $k$-small system; $k$-additive algebra admissible with respect to a $k$-small system
@article{10_21136_MB_2019_0116_17,
     author = {Basu, Sanjib and Sen, Debasish},
     title = {An abstract and generalized approach to the {Vitali} theorem on nonmeasurable sets},
     journal = {Mathematica Bohemica},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2020},
     doi = {10.21136/MB.2019.0116-17},
     mrnumber = {4088693},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/}
}
TY  - JOUR
AU  - Basu, Sanjib
AU  - Sen, Debasish
TI  - An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
JO  - Mathematica Bohemica
PY  - 2020
SP  - 65
EP  - 70
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/
DO  - 10.21136/MB.2019.0116-17
LA  - en
ID  - 10_21136_MB_2019_0116_17
ER  - 
%0 Journal Article
%A Basu, Sanjib
%A Sen, Debasish
%T An abstract and generalized approach to the Vitali theorem on nonmeasurable sets
%J Mathematica Bohemica
%D 2020
%P 65-70
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/
%R 10.21136/MB.2019.0116-17
%G en
%F 10_21136_MB_2019_0116_17
Basu, Sanjib; Sen, Debasish. An abstract and generalized approach to the Vitali theorem on nonmeasurable sets. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 65-70. doi : 10.21136/MB.2019.0116-17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0116-17/

Cité par Sources :