The kh-socle of a commutative semisimple Banach algebra
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 387-399
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathcal {A}$ be a commutative complex semisimple Banach algebra. Denote by ${\rm kh}({\rm soc}(\mathcal {A}))$ the kernel of the hull of the socle of $\mathcal {A}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal {A}$. This allows us to show that a ``result'' from Riesz theory in commutative Banach algebras is not true.
DOI :
10.21136/MB.2019.0106-18
Classification :
46J05, 46J20, 47A10
Keywords: commutative Banach algebra; socle; kh-socle; inessential element
Keywords: commutative Banach algebra; socle; kh-socle; inessential element
@article{10_21136_MB_2019_0106_18,
author = {Hadder, Youness},
title = {The kh-socle of a commutative semisimple {Banach} algebra},
journal = {Mathematica Bohemica},
pages = {387--399},
publisher = {mathdoc},
volume = {145},
number = {4},
year = {2020},
doi = {10.21136/MB.2019.0106-18},
mrnumber = {4221841},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0106-18/}
}
TY - JOUR AU - Hadder, Youness TI - The kh-socle of a commutative semisimple Banach algebra JO - Mathematica Bohemica PY - 2020 SP - 387 EP - 399 VL - 145 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0106-18/ DO - 10.21136/MB.2019.0106-18 LA - en ID - 10_21136_MB_2019_0106_18 ER -
Hadder, Youness. The kh-socle of a commutative semisimple Banach algebra. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 387-399. doi: 10.21136/MB.2019.0106-18
Cité par Sources :