Keywords: commutative Banach algebra; socle; kh-socle; inessential element
@article{10_21136_MB_2019_0106_18,
author = {Hadder, Youness},
title = {The kh-socle of a commutative semisimple {Banach} algebra},
journal = {Mathematica Bohemica},
pages = {387--399},
year = {2020},
volume = {145},
number = {4},
doi = {10.21136/MB.2019.0106-18},
mrnumber = {4221841},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0106-18/}
}
TY - JOUR AU - Hadder, Youness TI - The kh-socle of a commutative semisimple Banach algebra JO - Mathematica Bohemica PY - 2020 SP - 387 EP - 399 VL - 145 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0106-18/ DO - 10.21136/MB.2019.0106-18 LA - en ID - 10_21136_MB_2019_0106_18 ER -
Hadder, Youness. The kh-socle of a commutative semisimple Banach algebra. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 387-399. doi: 10.21136/MB.2019.0106-18
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004). | DOI | MR | JFM
[2] Alexander, J. C.: Compact Banach algebras. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 1-18. | DOI | MR | JFM
[3] Al-Moajil, A. H.: The compactum of a semi-simple commutative Banach algebra. Int. J. Math. Math. Sci. 7 (1984), 821-822. | DOI | MR | JFM
[4] Androulakis, G., Schlumprecht, T.: Strictly singular, non-compact operators exist on the space of Gowers and Maurey. J. Lond. Math. Soc., II. Ser. 64 (2001), 655-674. | DOI | MR | JFM
[5] Aupetit, B.: A Primer on Spectral Theory. Universitext. Springer, New York (1991). | DOI | MR | JFM
[6] Aupetit, B., Mouton, H. du T.: Spectrum preserving linear mappings in Banach algebras. Studia Math. 109 (1994), 91-100. | DOI | MR | JFM
[7] Barnes, B. A.: A generalized Fredholm theory for certain maps in the regular representations of an algebra. Can. J. Math. 20 (1968), 495-504. | DOI | MR | JFM
[8] Barnes, B. A.: The Fredholm elements of a ring. Can. J. Math. 21 (1969), 84-95. | DOI | MR | JFM
[9] Barnes, B. A., Murphy, G. J., Smyth, M. R. F., West, T. T.: Riesz and Fredholm Theory in Banach Algebras. Research Notes in Mathematics 67. Pitman Advanced Publishing Program, Boston (1982). | MR | JFM
[10] Boudi, N., Hadder, Y.: On linear maps preserving generalized invertibility and related properties. J. Math. Anal. Appl. 345 (2008), 20-25. | DOI | MR | JFM
[11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J. 28 (1978), 656-676. | DOI | MR | JFM
[12] Rickart, C. E.: General Theory of Banach Algebras. The University Series in Higher Mathematics. D. Van Nostrand, Princeton (1960). | MR | JFM
[13] Smyth, M. R. F.: Riesz theory in Banach algebras. Math. Z. 145 (1975), 145-155. | DOI | MR | JFM
[14] Wang, X., Cao, P.: Spectral characterization of the kh-socle in Banach Jordan algebras. J. Math. Anal. Appl. 466 (2018), 567-572. | DOI | MR | JFM
Cité par Sources :