On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 71-73.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere.
DOI : 10.21136/MB.2019.0104-18
Classification : 31B05
Keywords: subharmonic function; extension theorem
@article{10_21136_MB_2019_0104_18,
     author = {Gardiner, Stephen J. and Sj\"odin, Tomas},
     title = {On a conjecture of {Kr\'al} concerning the subharmonic extension of continuously differentiable functions},
     journal = {Mathematica Bohemica},
     pages = {71--73},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2020},
     doi = {10.21136/MB.2019.0104-18},
     mrnumber = {4088694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/}
}
TY  - JOUR
AU  - Gardiner, Stephen J.
AU  - Sjödin, Tomas
TI  - On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
JO  - Mathematica Bohemica
PY  - 2020
SP  - 71
EP  - 73
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/
DO  - 10.21136/MB.2019.0104-18
LA  - en
ID  - 10_21136_MB_2019_0104_18
ER  - 
%0 Journal Article
%A Gardiner, Stephen J.
%A Sjödin, Tomas
%T On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
%J Mathematica Bohemica
%D 2020
%P 71-73
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/
%R 10.21136/MB.2019.0104-18
%G en
%F 10_21136_MB_2019_0104_18
Gardiner, Stephen J.; Sjödin, Tomas. On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 71-73. doi : 10.21136/MB.2019.0104-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/

Cité par Sources :