Keywords: subharmonic function; extension theorem
@article{10_21136_MB_2019_0104_18,
author = {Gardiner, Stephen J. and Sj\"odin, Tomas},
title = {On a conjecture of {Kr\'al} concerning the subharmonic extension of continuously differentiable functions},
journal = {Mathematica Bohemica},
pages = {71--73},
year = {2020},
volume = {145},
number = {1},
doi = {10.21136/MB.2019.0104-18},
mrnumber = {4088694},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/}
}
TY - JOUR AU - Gardiner, Stephen J. AU - Sjödin, Tomas TI - On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions JO - Mathematica Bohemica PY - 2020 SP - 71 EP - 73 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/ DO - 10.21136/MB.2019.0104-18 LA - en ID - 10_21136_MB_2019_0104_18 ER -
%0 Journal Article %A Gardiner, Stephen J. %A Sjödin, Tomas %T On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions %J Mathematica Bohemica %D 2020 %P 71-73 %V 145 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/ %R 10.21136/MB.2019.0104-18 %G en %F 10_21136_MB_2019_0104_18
Gardiner, Stephen J.; Sjödin, Tomas. On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 71-73. doi: 10.21136/MB.2019.0104-18
[1] Armitage, D. H., Gardiner, S. J.: Classical Potential Theory. Springer Monographs in Mathematics. Springer, London (2001). | DOI | MR | JFM
[2] Caffarelli, L. A., Cabré, X.: Fully Nonlinear Elliptic Equations. Colloquium Publications 43. AMS, Providence (1995). | DOI | MR | JFM
[3] Crandall, M. G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., New Ser. 27 (1992), 1-67. | DOI | MR | JFM
[4] Juutinen, P., Lindqvist, P.: A theorem of Radó's type for the solutions of a quasi-linear equation. Math. Res. Lett. 11 (2004), 31-34. | DOI | MR | JFM
[5] Juutinen, P., Lindqvist, P., Manfredi, J. J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001), 699-717. | DOI | MR | JFM
[6] Král, J.: Some extension results concerning harmonic functions. J. Lond. Math. Soc., II. Ser. 28 (1983), 62-70. | DOI | MR | JFM
[7] Král, J.: A conjecture concerning subharmonic functions. Čas. Pěst. Mat. 110 (1985), page 415 Czech. | DOI
[8] Pokrovskiĭ, A. V.: A simple proof of the Radó and Král theorems on removability of the zero locus for analytic and harmonic functions. Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2015 (2015), 29-31. | DOI | MR | JFM
[9] Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987). | MR | JFM
Cité par Sources :