On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 71-73
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere.
This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere.
DOI : 10.21136/MB.2019.0104-18
Classification : 31B05
Keywords: subharmonic function; extension theorem
@article{10_21136_MB_2019_0104_18,
     author = {Gardiner, Stephen J. and Sj\"odin, Tomas},
     title = {On a conjecture of {Kr\'al} concerning the subharmonic extension of continuously differentiable functions},
     journal = {Mathematica Bohemica},
     pages = {71--73},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2019.0104-18},
     mrnumber = {4088694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/}
}
TY  - JOUR
AU  - Gardiner, Stephen J.
AU  - Sjödin, Tomas
TI  - On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
JO  - Mathematica Bohemica
PY  - 2020
SP  - 71
EP  - 73
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/
DO  - 10.21136/MB.2019.0104-18
LA  - en
ID  - 10_21136_MB_2019_0104_18
ER  - 
%0 Journal Article
%A Gardiner, Stephen J.
%A Sjödin, Tomas
%T On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions
%J Mathematica Bohemica
%D 2020
%P 71-73
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-18/
%R 10.21136/MB.2019.0104-18
%G en
%F 10_21136_MB_2019_0104_18
Gardiner, Stephen J.; Sjödin, Tomas. On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 71-73. doi: 10.21136/MB.2019.0104-18

[1] Armitage, D. H., Gardiner, S. J.: Classical Potential Theory. Springer Monographs in Mathematics. Springer, London (2001). | DOI | MR | JFM

[2] Caffarelli, L. A., Cabré, X.: Fully Nonlinear Elliptic Equations. Colloquium Publications 43. AMS, Providence (1995). | DOI | MR | JFM

[3] Crandall, M. G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., New Ser. 27 (1992), 1-67. | DOI | MR | JFM

[4] Juutinen, P., Lindqvist, P.: A theorem of Radó's type for the solutions of a quasi-linear equation. Math. Res. Lett. 11 (2004), 31-34. | DOI | MR | JFM

[5] Juutinen, P., Lindqvist, P., Manfredi, J. J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001), 699-717. | DOI | MR | JFM

[6] Král, J.: Some extension results concerning harmonic functions. J. Lond. Math. Soc., II. Ser. 28 (1983), 62-70. | DOI | MR | JFM

[7] Král, J.: A conjecture concerning subharmonic functions. Čas. Pěst. Mat. 110 (1985), page 415 Czech. | DOI

[8] Pokrovskiĭ, A. V.: A simple proof of the Radó and Král theorems on removability of the zero locus for analytic and harmonic functions. Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2015 (2015), 29-31. | DOI | MR | JFM

[9] Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987). | MR | JFM

Cité par Sources :