An investigation on the $n$-fold IVRL-filters in triangle algebras
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 75-91
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present study aimed to introduce $n$-fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of $n$-fold (positive) implicative IVRL-extended filters and $n$-fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the $n$-fold IVRL-extended filters, $n$-fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
The present study aimed to introduce $n$-fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of $n$-fold (positive) implicative IVRL-extended filters and $n$-fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the $n$-fold IVRL-extended filters, $n$-fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
DOI : 10.21136/MB.2019.0104-17
Classification : 03B50, 03B52, 08A30, 08A72
Keywords: interval-valued structure; triangle algebra; interval valued residuated lattice filter; $n$-fold interval valued residuated lattice extended filter
@article{10_21136_MB_2019_0104_17,
     author = {Zahiri, Saeide and Borumand Saeid, Arsham},
     title = {An investigation on the $n$-fold {IVRL-filters} in triangle algebras},
     journal = {Mathematica Bohemica},
     pages = {75--91},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2019.0104-17},
     mrnumber = {4088695},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-17/}
}
TY  - JOUR
AU  - Zahiri, Saeide
AU  - Borumand Saeid, Arsham
TI  - An investigation on the $n$-fold IVRL-filters in triangle algebras
JO  - Mathematica Bohemica
PY  - 2020
SP  - 75
EP  - 91
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-17/
DO  - 10.21136/MB.2019.0104-17
LA  - en
ID  - 10_21136_MB_2019_0104_17
ER  - 
%0 Journal Article
%A Zahiri, Saeide
%A Borumand Saeid, Arsham
%T An investigation on the $n$-fold IVRL-filters in triangle algebras
%J Mathematica Bohemica
%D 2020
%P 75-91
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0104-17/
%R 10.21136/MB.2019.0104-17
%G en
%F 10_21136_MB_2019_0104_17
Zahiri, Saeide; Borumand Saeid, Arsham. An investigation on the $n$-fold IVRL-filters in triangle algebras. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 75-91. doi: 10.21136/MB.2019.0104-17

[1] Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic---Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht (1998). | DOI | MR | JFM

[2] Piciu, D.: Algebras of Fuzzy Logic. Ed. Universtaria, Craiova (2007).

[3] Gasse, B. Van, Cornelis, C., Deschrijver, G., Kerre, E. E.: A characterization of interval-valued residuated lattices. Int. J. Approx. Reasoning 49 (2008), 478-487. | DOI | MR | JFM

[4] Gasse, B. Van, Cornelis, C., Deschrijver, G., Kerre, E. E.: Triangle algebras: A formal logic approach to interval-valued residuated lattices. Fuzzy Sets Syst. 159 (2008), 1042-1060. | DOI | MR | JFM

[5] Gasse, B. Van, Deschrijver, G., Cornelis, C., Kerre, E. E.: Filters of residuated lattices and triangle algebras. Inf. Sci. 180 (2010), 3006-3020. | DOI | MR | JFM

[6] Ward, M., Dilworth, R. P.: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335-354. | DOI | MR | JFM

[7] Zahiri, S., Saeid, A. Borumand, Eslami, E.: A new approach to filters in triangle algebras. Publ. Inst. Math., Nouv. Sér. 101 (115) (2017), 267-283. | DOI | MR

Cité par Sources :