Keywords: Nevanlinna theory; meromorphic function; $q$-shift difference polynomial; uniqueness
@article{10_21136_MB_2019_0093_18,
author = {Dyavanal, Renukadevi S. and Desai, Rajalaxmi V.},
title = {Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function},
journal = {Mathematica Bohemica},
pages = {241--253},
year = {2020},
volume = {145},
number = {3},
doi = {10.21136/MB.2019.0093-18},
mrnumber = {4221832},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/}
}
TY - JOUR AU - Dyavanal, Renukadevi S. AU - Desai, Rajalaxmi V. TI - Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function JO - Mathematica Bohemica PY - 2020 SP - 241 EP - 253 VL - 145 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/ DO - 10.21136/MB.2019.0093-18 LA - en ID - 10_21136_MB_2019_0093_18 ER -
%0 Journal Article %A Dyavanal, Renukadevi S. %A Desai, Rajalaxmi V. %T Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function %J Mathematica Bohemica %D 2020 %P 241-253 %V 145 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/ %R 10.21136/MB.2019.0093-18 %G en %F 10_21136_MB_2019_0093_18
Dyavanal, Renukadevi S.; Desai, Rajalaxmi V. Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 241-253. doi: 10.21136/MB.2019.0093-18
[1] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-difference and differential polynomials of entire functions. Math. Sci. Int. Research J. 4 (2015), 267-271.
[2] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-shift difference and differential polynomials of entire functions. Far East J. Appl. Math. 91 (2015), 189-202. | DOI | JFM
[3] Dyavanal, R. S., Desai, R. V.: Uniqueness of product of difference polynomials of meromorphic functions sharing fixed point with finite weight. Glob. J. Pure Appl. Math. 14 (2018), 331-346. | MR
[4] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of difference-differential polynomials of entire functions. Math. Sci. Int. Research J. 4 (2015), 276-280.
[5] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of uniqueness of difference polynomials of meromorphic functions. Far East J. Math. Sci. (FJMS) 98 (2015), 293-313. | DOI | JFM
[6] Dyavanal, R. S., Hattikal, A. M.: On the uniqueness of product of difference polynomials of meromorphic functions. Konuralp J. Math. 4 (2016), 42-55. | MR | JFM
[7] Dyavanal, R. S., Hattikal, A. M.: Unicity theorems on difference polynomials of meromorphic functions sharing one value. Int. J. Pure Appl. Math. Sci. 9 (2016), 89-97.
[8] Dyavanal, R. S., Hattikal, A. M.: Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function. New Trends Math. Sci. 5 (2017), 250-263. | DOI | MR
[9] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). | MR | JFM
[10] Lin, W.-C., Yi, H.-X.: Uniqueness theorems for meromorphic function. Indian J. Pure Appl. Math. 35 (2004), 121-132. | MR | JFM
[11] Liu, K., Qi, X.-G.: Meromorphic solutions of $q$-shift difference equations. Ann. Pol. Math. 101 (2011), 215-225. | DOI | MR | JFM
[12] Thin, N. V.: Uniqueness of meromorphic functions and $Q$-differential polynomials sharing small functions. Bull. Iran. Math. Soc. 43 (2017), 629-647. | MR | JFM
[13] Xu, J., Zhang, X.: The zeros of $q$-shift difference polynomials of meromorphic functions. Adv. Difference Equ. 2012 (2012), Paper No. 200, 10 pages. | DOI | MR | JFM
[14] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). | MR | JFM
[15] Yang, L.: Value Distribution Theory. Springer, Berlin; Science Press, Beijing (1993). | DOI | MR | JFM
[16] Zhang, X.: Value sharing of meromorphic functions and some questions of Dyavanal. Front. Math. China 7 (2012), 161-176. | DOI | MR | JFM
[17] Zhao, Q., Zhang, J.: Zeros and shared one value of $q$-shift difference polynomials. J. Contemp. Math. Anal., Armen. Acad. Sci. 50 (2015), 63-69. | DOI | MR | JFM
Cité par Sources :