Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function
Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 241-253.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the uniqueness of a $q$-shift difference polynomial of meromorphic functions sharing a small function which extend the results of N. V. Thin (2017) to $q$-difference operators.
DOI : 10.21136/MB.2019.0093-18
Classification : 30D35
Keywords: Nevanlinna theory; meromorphic function; $q$-shift difference polynomial; uniqueness
@article{10_21136_MB_2019_0093_18,
     author = {Dyavanal, Renukadevi S. and Desai, Rajalaxmi V.},
     title = {Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function},
     journal = {Mathematica Bohemica},
     pages = {241--253},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {2020},
     doi = {10.21136/MB.2019.0093-18},
     mrnumber = {4221832},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/}
}
TY  - JOUR
AU  - Dyavanal, Renukadevi S.
AU  - Desai, Rajalaxmi V.
TI  - Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function
JO  - Mathematica Bohemica
PY  - 2020
SP  - 241
EP  - 253
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/
DO  - 10.21136/MB.2019.0093-18
LA  - en
ID  - 10_21136_MB_2019_0093_18
ER  - 
%0 Journal Article
%A Dyavanal, Renukadevi S.
%A Desai, Rajalaxmi V.
%T Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function
%J Mathematica Bohemica
%D 2020
%P 241-253
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/
%R 10.21136/MB.2019.0093-18
%G en
%F 10_21136_MB_2019_0093_18
Dyavanal, Renukadevi S.; Desai, Rajalaxmi V. Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 241-253. doi : 10.21136/MB.2019.0093-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0093-18/

Cité par Sources :