Keywords: Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness
@article{10_21136_MB_2019_0086_18,
author = {Malik, Ishfaq Ahmad and Jalal, Tanweer},
title = {Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces},
journal = {Mathematica Bohemica},
pages = {191--204},
year = {2020},
volume = {145},
number = {2},
doi = {10.21136/MB.2019.0086-18},
mrnumber = {4221829},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0086-18/}
}
TY - JOUR
AU - Malik, Ishfaq Ahmad
AU - Jalal, Tanweer
TI - Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces
JO - Mathematica Bohemica
PY - 2020
SP - 191
EP - 204
VL - 145
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0086-18/
DO - 10.21136/MB.2019.0086-18
LA - en
ID - 10_21136_MB_2019_0086_18
ER -
%0 Journal Article
%A Malik, Ishfaq Ahmad
%A Jalal, Tanweer
%T Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces
%J Mathematica Bohemica
%D 2020
%P 191-204
%V 145
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0086-18/
%R 10.21136/MB.2019.0086-18
%G en
%F 10_21136_MB_2019_0086_18
Malik, Ishfaq Ahmad; Jalal, Tanweer. Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 191-204. doi: 10.21136/MB.2019.0086-18
[1] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973-1033. | DOI | MR | JFM
[2] Aghajani, A., Pourhadi, E.: Application of measure of noncompactness to $\ell_1$-solvability of infinite systems of second order differential equations. Bull. Belg. Math. Soc.-Simon Stevin 22 (2015), 105-118. | DOI | MR | JFM
[3] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). | MR | JFM
[4] Banaś, J., Lecko, M.: Solvability of infinite systems of differential equations in Banach sequence spaces. J. Comput. Appl. Math. 137 (2001), 363-375. | DOI | MR | JFM
[5] Banaś, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, New Delhi (2014). | DOI | MR | JFM
[6] Banaś, J., Mursaleen, M., Rizvi, S. M. H.: Existence of solutions to a boundary-value problem for an infinite system of differential equations. Electron. J. Differ. Equ. 2017 (2017), Paper No. 262, 12 pages. | MR | JFM
[7] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. | MR | JFM
[8] Deimling, K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Mathematics 596. Springer, Berlin (1977). | DOI | MR | JFM
[9] Deimling, K.: Nonlinear Functional Analysis. Dover Books on Mathematics. Dover Publications, Mineola (2010). | DOI | MR | JFM
[10] Duffy, D. G.: Green's Functions with Applications. Studies in Advanced Mathematics CRC Press, Boca Raton (2015). | DOI | MR | JFM
[11] Klamka, J.: Schauder's fixed-point theorem in nonlinear controllability problems. Control Cybern. 29 (2000), 153-165. | MR | JFM
[12] Kuratowski, C.: Sur les espaces complets. Fundamenta 15 (1930), 301-309 French. | DOI | JFM
[13] Liu, Z., Kang, S. M.: Applications of Schauder's fixed-point theorem with respect to iterated functional equations. Appl. Math. Lett. 14 (2001), 955-962. | DOI | MR | JFM
[14] Malkowsky, E., Rakočević, V.: An introduction into the theory of sequence spaces and measures of noncompactness. Four Topics in Mathematics Zbornik Radova {\it 9(17)}. Matematički Institut SANU, Beograd (2000), 143-234 B. Stanković. | MR | JFM
[15] Mohiuddine, S. A., Srivastava, H. M., Alotaibi, A.: Application of measures of noncompactness to the infinite system of second-order differential equations in $\ell_p$ spaces. Adv. Difference Equ. 2016 (2016), Paper No. 317, 13 pages. | DOI | MR | JFM
[16] Mursaleen, M.: Application of measure of noncompactness to infinite systems of differential equations. Can. Math. Bull. 56 (2013), 388-394. | DOI | MR | JFM
[17] Mursaleen, M., Mohiuddine, S. A.: Applications of measures of noncompactness to the infinite system of differential equations in $\ell_p$ spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2111-2115. | DOI | MR | JFM
[18] Mursaleen, M., Rizvi, S. M. H.: Solvability of infinite systems of second order differential equations in $c_0$ and $\ell_1$ by Meir-Keeler condensing operators. Proc. Am. Math. Soc. 144 (2016), 4279-4289. | DOI | MR | JFM
[19] Mursaleen, M., Rizvi, S. M. H., Samet, B.: Solvability of a class of boundary value problems in the space of convergent sequences. Appl. Anal. 97 (2018), 1829-1845. | DOI | MR | JFM
[20] Srivastava, H. M., Das, A., Hazarika, B., Mohiuddine, S. A.: Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces $c_0$ and $\ell_1$ via the measure of noncompactness. Math. Methods Appl. Sci. 41 (2018), 3558-3569. | DOI | MR | JFM
Cité par Sources :