Keywords: singular nonlinear boundary value problem; positive solution; Krasnosel'skii fixed point theorem; multi-point; half-line
@article{10_21136_MB_2019_0084_18,
author = {Benbaziz, Zakia and Djebali, Smail},
title = {On a singular multi-point third-order boundary value problem on the half-line},
journal = {Mathematica Bohemica},
pages = {305--324},
year = {2020},
volume = {145},
number = {3},
doi = {10.21136/MB.2019.0084-18},
mrnumber = {4221836},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0084-18/}
}
TY - JOUR AU - Benbaziz, Zakia AU - Djebali, Smail TI - On a singular multi-point third-order boundary value problem on the half-line JO - Mathematica Bohemica PY - 2020 SP - 305 EP - 324 VL - 145 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0084-18/ DO - 10.21136/MB.2019.0084-18 LA - en ID - 10_21136_MB_2019_0084_18 ER -
%0 Journal Article %A Benbaziz, Zakia %A Djebali, Smail %T On a singular multi-point third-order boundary value problem on the half-line %J Mathematica Bohemica %D 2020 %P 305-324 %V 145 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0084-18/ %R 10.21136/MB.2019.0084-18 %G en %F 10_21136_MB_2019_0084_18
Benbaziz, Zakia; Djebali, Smail. On a singular multi-point third-order boundary value problem on the half-line. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 305-324. doi: 10.21136/MB.2019.0084-18
[1] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht (2001). | DOI | MR | JFM
[2] Chen, S., Zhang, Y.: Singular boundary value problems on a half-line. J. Math. Anal. Appl. 195 (1995), 449-468. | DOI | MR | JFM
[3] Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Mathematics in Science and Engineering 104. Academic Press, New York (1973). | DOI | MR | JFM
[4] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line. Comput. Math. Appl. 55 (2008), 2940-2952. | DOI | MR | JFM
[5] Djebali, S., Saifi, O.: Third order BVPs with $\phi$-Laplacian operators on $[0,+\infty)$. Afr. Diaspora J. Math. 16 (2013), 1-17. | MR | JFM
[6] Guo, D. J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). | DOI | MR | JFM
[7] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line. Acta Appl. Math. 111 (2010), 27-43. | DOI | MR | JFM
[8] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line. Appl. Math. Comput. 144 (2003), 543-556. | DOI | MR | JFM
[9] Wei, Z.: A necessary and sufficient condition for the existence of positive solutions of singular super-linear $m$-point boundary value problems. Appl. Math. Comput. 179 (2006), 67-78. | DOI | MR | JFM
[10] Wei, Z.: Some necessary and sufficient conditions for existence of positive solutions for third order singular super-linear multi-point boundary value problems. J. Appl. Math. Comput. 46 (2014), 407-422. | DOI | MR | JFM
[11] Yan, B., O'Regan, D., Agarwal, R. P.: Unbounded positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals. Funkc. Ekvacioj, Ser. Int. 51 (2008), 81-106. | DOI | MR | JFM
Cité par Sources :