Keywords: global existence; uniqueness; uniform stabilization
@article{10_21136_MB_2019_0054_18,
author = {Berbiche, Mohamed},
title = {Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation},
journal = {Mathematica Bohemica},
pages = {205--223},
year = {2020},
volume = {145},
number = {2},
doi = {10.21136/MB.2019.0054-18},
mrnumber = {4221830},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/}
}
TY - JOUR AU - Berbiche, Mohamed TI - Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation JO - Mathematica Bohemica PY - 2020 SP - 205 EP - 223 VL - 145 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/ DO - 10.21136/MB.2019.0054-18 LA - en ID - 10_21136_MB_2019_0054_18 ER -
%0 Journal Article %A Berbiche, Mohamed %T Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation %J Mathematica Bohemica %D 2020 %P 205-223 %V 145 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/ %R 10.21136/MB.2019.0054-18 %G en %F 10_21136_MB_2019_0054_18
Berbiche, Mohamed. Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 205-223. doi: 10.21136/MB.2019.0054-18
[1] Aassila, M., Cavalcanti, M. M., Soriano, J. A.: Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38 (2000), 1581-1602. | DOI | MR | JFM
[2] Achouri, Z., Amroun, N. E., Benaissa, A.: The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40 (2017), 3837-3854. | DOI | MR | JFM
[3] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1 (2001), 69-84. | DOI | MR | JFM
[4] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optimization 42 (2003), 1310-1324. | DOI | MR | JFM
[5] Chill, R., Fašangová, E.: Convergence to steady states of solutions of semilinear evolutionary integral equations. Calc. Var. Partial Differ. Equ. 22 (2005), 321-342. | DOI | MR | JFM
[6] Coleman, B. D., Dill, E. H.: On the thermodynamics of electromagnetic fields in materials with memory. Arch. Rational Mech. Anal. 41 (1971), 132-162. | DOI | MR
[7] Coleman, B. D., Dill, E. H.: Thermodynamic restriction on the constitutive equations of electromagnetic theory. Zeit. Angew. Math. Phys. 22 (1971), 691-702. | DOI | JFM
[8] Dafermos, C. M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37 (1970), 297-308. | DOI | MR | JFM
[9] Desch, W., Fašangová, E., Milota, J., Propst, G.: Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80 (2010), 405-415. | DOI | MR | JFM
[10] Eringen, A. C., Maugin, G. A.: Electrodynamics of Continua. I. Foundations and Solid Media. Springer, New York (1990). | DOI | MR
[11] Fabrizio, M., Morro, A.: Thermodynamics of electromagnetic isothermal system with memory. J. Non-Equilibrium Thermodyn. 22 (1997), 110-128. | DOI | JFM
[12] Giorgi, C., Naso, M. G., Pata, V.: Energy decay of electromagnetic systems with memory. Math. Models Methods Appl. Sci. 15 (2005), 1489-1502. | DOI | MR | JFM
[13] Han, X., Wang, M.: Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3090-3098. | DOI | MR | JFM
[14] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 33 (2010), 346-358. | DOI | MR | JFM
[15] Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990), 33-54. | MR | JFM
[16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. | MR | JFM
[17] Matignon, M., Audounet, J., Montseny, G.: Energy decay rate for wave equations with damping of fractional order. Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640.
[18] Matos, L. P. V., Dmitriev, V.: On the stability of energy and harmonic waves in conductors with memory. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. | DOI
[19] Maugin, G. A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Series in Applied Mathematics and Mechanics 33. North-Holland, Amsterdam (1988). | DOI | MR | JFM
[20] Mbodje, B.: Wave energy decay under fractional derivative controls. IMA J. Math. Control Inf. 23 (2006), 237-257. | DOI | MR | JFM
[21] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 2589-2598. | DOI | MR | JFM
[22] Rivera, J. E. Muñoz, Naso, M. G., Vuk, E.: Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27 (2004), 819-841. | DOI | MR | JFM
[23] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptotic Anal. 50 (2006), 31-67. | MR | JFM
[24] Park, J. Y., Park, S. H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. | DOI | MR | JFM
[25] Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11 (2001), 505-529. | MR | JFM
[26] Wu, S.-T.: General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Z. Angew. Math. Phys. 63 (2012), 65-106. | DOI | MR | JFM
[27] Yassine, H.: Stability of global bounded solutions to a nonautonomous nonlinear second order integro-differential equation. Z. Anal. Anwend. 37 (2018), 83-99. | DOI | MR | JFM
[28] Zacher, R.: Convergence to equilibrium for second order differential equations with weak damping of memory type. Adv. Differ. Equ. 14 (2009), 749-770. | MR | JFM
Cité par Sources :