Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 205-223
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
DOI : 10.21136/MB.2019.0054-18
Classification : 35B33, 47J35
Keywords: global existence; uniqueness; uniform stabilization
@article{10_21136_MB_2019_0054_18,
     author = {Berbiche, Mohamed},
     title = {Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation},
     journal = {Mathematica Bohemica},
     pages = {205--223},
     year = {2020},
     volume = {145},
     number = {2},
     doi = {10.21136/MB.2019.0054-18},
     mrnumber = {4221830},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/}
}
TY  - JOUR
AU  - Berbiche, Mohamed
TI  - Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
JO  - Mathematica Bohemica
PY  - 2020
SP  - 205
EP  - 223
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/
DO  - 10.21136/MB.2019.0054-18
LA  - en
ID  - 10_21136_MB_2019_0054_18
ER  - 
%0 Journal Article
%A Berbiche, Mohamed
%T Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
%J Mathematica Bohemica
%D 2020
%P 205-223
%V 145
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0054-18/
%R 10.21136/MB.2019.0054-18
%G en
%F 10_21136_MB_2019_0054_18
Berbiche, Mohamed. Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 205-223. doi: 10.21136/MB.2019.0054-18

[1] Aassila, M., Cavalcanti, M. M., Soriano, J. A.: Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38 (2000), 1581-1602. | DOI | MR | JFM

[2] Achouri, Z., Amroun, N. E., Benaissa, A.: The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40 (2017), 3837-3854. | DOI | MR | JFM

[3] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1 (2001), 69-84. | DOI | MR | JFM

[4] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optimization 42 (2003), 1310-1324. | DOI | MR | JFM

[5] Chill, R., Fašangová, E.: Convergence to steady states of solutions of semilinear evolutionary integral equations. Calc. Var. Partial Differ. Equ. 22 (2005), 321-342. | DOI | MR | JFM

[6] Coleman, B. D., Dill, E. H.: On the thermodynamics of electromagnetic fields in materials with memory. Arch. Rational Mech. Anal. 41 (1971), 132-162. | DOI | MR

[7] Coleman, B. D., Dill, E. H.: Thermodynamic restriction on the constitutive equations of electromagnetic theory. Zeit. Angew. Math. Phys. 22 (1971), 691-702. | DOI | JFM

[8] Dafermos, C. M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37 (1970), 297-308. | DOI | MR | JFM

[9] Desch, W., Fašangová, E., Milota, J., Propst, G.: Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80 (2010), 405-415. | DOI | MR | JFM

[10] Eringen, A. C., Maugin, G. A.: Electrodynamics of Continua. I. Foundations and Solid Media. Springer, New York (1990). | DOI | MR

[11] Fabrizio, M., Morro, A.: Thermodynamics of electromagnetic isothermal system with memory. J. Non-Equilibrium Thermodyn. 22 (1997), 110-128. | DOI | JFM

[12] Giorgi, C., Naso, M. G., Pata, V.: Energy decay of electromagnetic systems with memory. Math. Models Methods Appl. Sci. 15 (2005), 1489-1502. | DOI | MR | JFM

[13] Han, X., Wang, M.: Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3090-3098. | DOI | MR | JFM

[14] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 33 (2010), 346-358. | DOI | MR | JFM

[15] Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990), 33-54. | MR | JFM

[16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. | MR | JFM

[17] Matignon, M., Audounet, J., Montseny, G.: Energy decay rate for wave equations with damping of fractional order. Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640.

[18] Matos, L. P. V., Dmitriev, V.: On the stability of energy and harmonic waves in conductors with memory. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. | DOI

[19] Maugin, G. A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Series in Applied Mathematics and Mechanics 33. North-Holland, Amsterdam (1988). | DOI | MR | JFM

[20] Mbodje, B.: Wave energy decay under fractional derivative controls. IMA J. Math. Control Inf. 23 (2006), 237-257. | DOI | MR | JFM

[21] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 2589-2598. | DOI | MR | JFM

[22] Rivera, J. E. Muñoz, Naso, M. G., Vuk, E.: Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27 (2004), 819-841. | DOI | MR | JFM

[23] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptotic Anal. 50 (2006), 31-67. | MR | JFM

[24] Park, J. Y., Park, S. H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. | DOI | MR | JFM

[25] Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11 (2001), 505-529. | MR | JFM

[26] Wu, S.-T.: General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Z. Angew. Math. Phys. 63 (2012), 65-106. | DOI | MR | JFM

[27] Yassine, H.: Stability of global bounded solutions to a nonautonomous nonlinear second order integro-differential equation. Z. Anal. Anwend. 37 (2018), 83-99. | DOI | MR | JFM

[28] Zacher, R.: Convergence to equilibrium for second order differential equations with weak damping of memory type. Adv. Differ. Equ. 14 (2009), 749-770. | MR | JFM

Cité par Sources :