Keywords: critical point; Ekeland variational principle; Mountain Pass Theorem; Palais-Smale condition; positive solution
@article{10_21136_MB_2019_0051_18,
author = {Bouafia, Dahmane and Moussaoui, Toufik and O'Regan, Donal},
title = {Multiplicity of positive solutions for second order quasilinear equations},
journal = {Mathematica Bohemica},
pages = {93--112},
year = {2020},
volume = {145},
number = {1},
doi = {10.21136/MB.2019.0051-18},
mrnumber = {4088696},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/}
}
TY - JOUR AU - Bouafia, Dahmane AU - Moussaoui, Toufik AU - O'Regan, Donal TI - Multiplicity of positive solutions for second order quasilinear equations JO - Mathematica Bohemica PY - 2020 SP - 93 EP - 112 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/ DO - 10.21136/MB.2019.0051-18 LA - en ID - 10_21136_MB_2019_0051_18 ER -
%0 Journal Article %A Bouafia, Dahmane %A Moussaoui, Toufik %A O'Regan, Donal %T Multiplicity of positive solutions for second order quasilinear equations %J Mathematica Bohemica %D 2020 %P 93-112 %V 145 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/ %R 10.21136/MB.2019.0051-18 %G en %F 10_21136_MB_2019_0051_18
Bouafia, Dahmane; Moussaoui, Toufik; O'Regan, Donal. Multiplicity of positive solutions for second order quasilinear equations. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 93-112. doi: 10.21136/MB.2019.0051-18
[1] Alves, C. O.: Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbb{R}^{N}$. Electron. J. Differ. Equ. 13 (1997), Paper No. 13, 10 pages. | MR | JFM
[2] Bouafia, D., Moussaoui, T., O'Regan, D.: Existence of solutions for a second order problem on the half-line via Ekeland's variational principle. Discuss. Math. Differ. Incl. Control Optim. 36 (2016), 131-140. | DOI | MR
[3] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2010). | DOI | MR | JFM
[4] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | DOI | MR | JFM
[5] Frites, O., Moussaoui, T., O'Regan, D.: Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 395-407. | MR | JFM
[6] Jabri, Y.: The Mountain Pass Theorem. Variants, Generalizations and Some Applications. Encyclopedia of Mathematics and Its Applications 95. Cambridge University Press, Cambridge (2003). | DOI | MR | JFM
[7] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications 24. Birkhäuser, Boston (1996). | DOI | MR | JFM
Cité par Sources :