Multiplicity of positive solutions for second order quasilinear equations
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 93-112.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss the existence and multiplicity of positive solutions for a class of second order quasilinear equations. To obtain our results we will use the Ekeland variational principle and the Mountain Pass Theorem.
DOI : 10.21136/MB.2019.0051-18
Classification : 30E25, 35A15, 35B38, 49K35, 58E30
Keywords: critical point; Ekeland variational principle; Mountain Pass Theorem; Palais-Smale condition; positive solution
@article{10_21136_MB_2019_0051_18,
     author = {Bouafia, Dahmane and Moussaoui, Toufik and O'Regan, Donal},
     title = {Multiplicity of positive solutions for second order quasilinear equations},
     journal = {Mathematica Bohemica},
     pages = {93--112},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2020},
     doi = {10.21136/MB.2019.0051-18},
     mrnumber = {4088696},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/}
}
TY  - JOUR
AU  - Bouafia, Dahmane
AU  - Moussaoui, Toufik
AU  - O'Regan, Donal
TI  - Multiplicity of positive solutions for second order quasilinear equations
JO  - Mathematica Bohemica
PY  - 2020
SP  - 93
EP  - 112
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/
DO  - 10.21136/MB.2019.0051-18
LA  - en
ID  - 10_21136_MB_2019_0051_18
ER  - 
%0 Journal Article
%A Bouafia, Dahmane
%A Moussaoui, Toufik
%A O'Regan, Donal
%T Multiplicity of positive solutions for second order quasilinear equations
%J Mathematica Bohemica
%D 2020
%P 93-112
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/
%R 10.21136/MB.2019.0051-18
%G en
%F 10_21136_MB_2019_0051_18
Bouafia, Dahmane; Moussaoui, Toufik; O'Regan, Donal. Multiplicity of positive solutions for second order quasilinear equations. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 93-112. doi : 10.21136/MB.2019.0051-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0051-18/

Cité par Sources :