$\mathcal F$-hypercyclic and disjoint $\mathcal F$-hypercyclic properties of binary relations over topological spaces
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 337-359
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We examine various types of $\mathcal F$-hypercyclic ($\mathcal F$-topologically transitive) and disjoint $\mathcal F$-hypercyclic (disjoint $\mathcal F$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.
We examine various types of $\mathcal F$-hypercyclic ($\mathcal F$-topologically transitive) and disjoint $\mathcal F$-hypercyclic (disjoint $\mathcal F$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.
DOI : 10.21136/MB.2019.0047-18
Classification : 47A16, 47B37, 47D06
Keywords: ${\mathcal F}$-hypercyclic binary relation; ${\mathcal F}$-topologically transitive binary relation; disjoint ${\mathcal F}$-hypercyclic binary relation; disjoint ${\mathcal F}$-topologically transitive binary relation; digraph
@article{10_21136_MB_2019_0047_18,
     author = {Kosti\'c, Marko},
     title = {$\mathcal F$-hypercyclic and disjoint $\mathcal F$-hypercyclic properties of binary relations over topological spaces},
     journal = {Mathematica Bohemica},
     pages = {337--359},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2019.0047-18},
     mrnumber = {4221838},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0047-18/}
}
TY  - JOUR
AU  - Kostić, Marko
TI  - $\mathcal F$-hypercyclic and disjoint $\mathcal F$-hypercyclic properties of binary relations over topological spaces
JO  - Mathematica Bohemica
PY  - 2020
SP  - 337
EP  - 359
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0047-18/
DO  - 10.21136/MB.2019.0047-18
LA  - en
ID  - 10_21136_MB_2019_0047_18
ER  - 
%0 Journal Article
%A Kostić, Marko
%T $\mathcal F$-hypercyclic and disjoint $\mathcal F$-hypercyclic properties of binary relations over topological spaces
%J Mathematica Bohemica
%D 2020
%P 337-359
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0047-18/
%R 10.21136/MB.2019.0047-18
%G en
%F 10_21136_MB_2019_0047_18
Kostić, Marko. $\mathcal F$-hypercyclic and disjoint $\mathcal F$-hypercyclic properties of binary relations over topological spaces. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 337-359. doi: 10.21136/MB.2019.0047-18

[1] Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358 (2006), 5083-5117. | DOI | MR | JFM

[2] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). | DOI | MR | JFM

[3] Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. Available at http://arxiv.org/pdf/arxiv:1703.03724 | MR

[4] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing, New York (1976). | DOI | MR | JFM

[5] Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dyn. Syst. 27 (2007), 383-404 erratum ibid. 29 2009 1993-1994. | DOI | MR | JFM

[6] Bonilla, A., Grosse-Erdmann, K.-G.: Upper frequent hypercyclicity and related notions. Rev. Mat. Complut. 31 (2018), 673-711. | DOI | MR | JFM

[7] Chartrand, G., Lesniak, L.: Graphs and Digraphs. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Brooks & Software. VIII, Monterey (1986). | MR | JFM

[8] Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M.: Dynamics of multivalued linear operators. Open Math. 15 (2017), 948-958. | DOI | MR | JFM

[9] Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M.: Dynamics on binary relations over topological spaces. Symmetry 10 (2018), 12 pages. | DOI

[10] Cvetković, D., Doobs, M., Sachs, H.: Spectra of Graphs: Theory and Applications. VEB Deutscher Verlag der Wissenschaften, Berlin (1980). | MR | JFM

[11] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Encyclopedia of Mathematics and Its Applications 66. Cambrige University Press, Cambridge (1997). | DOI | MR | JFM

[12] Fürstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. M. B. Porter Lectures, Rice University, Department of Mathematics, 1978. Princeton University Press, Princeton (1981). | MR | JFM

[13] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext. Springer, Berlin (2011). | DOI | MR | JFM

[14] Kostić, M.: ${\mathcal F}$-hypercyclic linear operators on Fréchet spaces. | DOI

[15] Kostić, M.: $\mathcal{F}$-hypercyclic extensions and disjoint ${\mathcal F}$-hypercyclic extensions of binary relations over topological spaces. Funct. Anal. Approx. Comput. 10 (2018), 41-52. | MR | JFM

[16] Mart'ı{n}ez-Avendaño, R. A.: Hypercyclicity of shifts on weighted {$L^p$} spaces of directed trees. J. Math. Anal. Appl. 446 (2017), 823-842. | DOI | MR | JFM

[17] Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Am. Math. Soc. 369 (2017), 4977-4994. | DOI | MR | JFM

[18] Moon, J. W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968). | MR | JFM

[19] Moon, J. W., Pullman, N. J.: On the powers of tournament matrices. J. Comb. Theory 3 (1967), 1-9. | DOI | MR | JFM

[20] Namayanja, P.: Chaotic dynamics in a transport equation on a network. Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 3415-3426. | DOI | MR | JFM

[21] Petrović, V.: Graph Theory. University of Novi Sad, Novi Sad (1998), Serbian.

Cité par Sources :