Keywords: Kurzweil-Stieltjes integral; generalized bounded variation; variational measure; Stieltjes derivative
@article{10_21136_MB_2019_0041_19,
author = {Monteiro, Giselle A.},
title = {On {Kurzweil-Stieltjes} equiintegrability and generalized {BV} functions},
journal = {Mathematica Bohemica},
pages = {423--436},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2019.0041-19},
mrnumber = {4047345},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0041-19/}
}
TY - JOUR AU - Monteiro, Giselle A. TI - On Kurzweil-Stieltjes equiintegrability and generalized BV functions JO - Mathematica Bohemica PY - 2019 SP - 423 EP - 436 VL - 144 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0041-19/ DO - 10.21136/MB.2019.0041-19 LA - en ID - 10_21136_MB_2019_0041_19 ER -
Monteiro, Giselle A. On Kurzweil-Stieltjes equiintegrability and generalized BV functions. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 423-436. doi: 10.21136/MB.2019.0041-19
[1] Bongiorno, B., Piazza, L. Di: Convergence theorems for generalized Riemann-Stieltjes integrals. Real Anal. Exch. 17 (1991-92), 339-361. | DOI | MR | JFM
[2] Bongiorno, B., Piazza, L. Di, Skvortsov, V.: A new full descriptive characterization of \hbox{Denjoy-Perron} integral. Real Anal. Exch. 21 (1995-96), 656-663. | DOI | MR | JFM
[3] Faure, C.-A.: A descriptive definition of the KH-Stieltjes integral. Real Anal. Exch. 23 (1998-99), 113-124. | DOI | MR | JFM
[4] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | MR | JFM
[5] Frigon, M., Pouso, R. L.: Theory and applications of first-order systems of Stieltjes differential equations. Adv. Nonlinear Anal. 6 (2017), 13-36. | DOI | MR | JFM
[6] Gordon, R. A.: Another look at a convergence theorem for the Henstock integral. Real Anal. Exch. 15 (1989-90), 724-728. | DOI | MR | JFM
[7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[8] Hoffmann, H.: Descriptive Characterisation of the Variational Henstock-Kurzweil-Stieltjes Integral and Applications. PhD thesis. Karlsruher Institue of Technology, Karlsruhe. Available at https://publikationen.bibliothek.kit.edu/1000046600 (2014).
[9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1991-92), 110-139. | DOI | MR | JFM
[10] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). | DOI | MR | JFM
[11] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Paper No. 7, 26 pages. | DOI | MR | JFM
[12] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). | DOI | MR | JFM
[13] Pouso, R. L., Rodríguez, A.: A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives. Real Anal. Exch. 40 (2015), 319-354. | DOI | MR | JFM
[14] Saks, S.: Theory of the Integral. With two additional notes by Stefan Banach. Monografie Matematyczne Tom. 7. G. E. Stechert & Co., New York (1937). | MR | JFM
[15] Satco, B.-R.: Measure integral inclusions with fast oscillating data. Electron. J. Differ. Equ. 2015 (2015), Paper No. 107, 13 pages. | MR | JFM
[16] Schwabik, Š.: Variational measures and the Kurzweil-Henstock integral. Math. Slovaca 59 (2009), 731-752. | DOI | MR | JFM
[17] Schwabik, Š.: General integration and extensions I. Czech. Math. J. 60 (2010), 961-981. | DOI | MR | JFM
[18] Schwabik, Š.: General integration and extensions II. Czech. Math. J. 60 (2010), 983-1005. | DOI | MR | JFM
[19] Schwabik, Š., Vrkoč, I.: On Kurzweil-Henstock equiintegrable sequences. Math. Bohem. 121 (1996), 189-207. | DOI | MR | JFM
[20] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM
[21] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics 1170. Springer, Berlin (1985). | DOI | MR | JFM
[22] Ward, A. J.: The Perron-Stieltjes integral. Math. Z. 41 (1936), 578-604. | DOI | MR | JFM
Cité par Sources :