@article{10_21136_MB_2019_0038_19,
author = {Mal\'y, Jan and Kuncov\'a, Krist\'yna},
title = {On a generalization of {Henstock-Kurzweil} integrals},
journal = {Mathematica Bohemica},
pages = {393--422},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2019.0038-19},
mrnumber = {4047344},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/}
}
TY - JOUR AU - Malý, Jan AU - Kuncová, Kristýna TI - On a generalization of Henstock-Kurzweil integrals JO - Mathematica Bohemica PY - 2019 SP - 393 EP - 422 VL - 144 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/ DO - 10.21136/MB.2019.0038-19 LA - en ID - 10_21136_MB_2019_0038_19 ER -
Malý, Jan; Kuncová, Kristýna. On a generalization of Henstock-Kurzweil integrals. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 393-422. doi: 10.21136/MB.2019.0038-19
[1] Ball, T., Preiss, D.: Monotonically controlled integrals. Mathematics Almost Everywhere. In Memory of Solomon Marcus World Scientific Publishing, Hackensack A. Bellow et al. (2018), 69-92. | DOI | MR
[2] Bendová, H., Malý, J.: An elementary way to introduce a Perron-like integral. Ann. Acad. Sci. Fenn., Math. 36 (2011), 153-164. | DOI | MR | JFM
[3] Bongiorno, B.: The Henstock-Kurzweil integral. Handbook of Measure Theory. Vol. I and II North-Holland, Amsterdam (2002), 587-615 E. Pap. | DOI | MR | JFM
[4] Burkill, J. C.: The approximately continuous Perron integral. Math. Z. 34 (1932), 270-278. | DOI | MR | JFM
[5] Pauw, T. De, Pfeffer, W. F.: Distributions for which $ div v=F$ has a continuous solution. Commun. Pure Appl. Math. 61 (2008), 230-260. | DOI | MR | JFM
[6] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris Sér. I Math. 154 (1912), 859-862 French. | JFM
[7] Denjoy, A.: Sur la dérivation et son calcul inverse. C. R. Acad. Sci., Paris Sér. I Math. 162 (1916), 377-380 French. | MR | JFM
[8] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | MR | JFM
[9] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[10] Gordon, R. A.: Some comments on an approximately continuous Khintchine integral. Real Anal. Exch. 20 (1994-95), 831-841. | DOI | MR | JFM
[11] Hencl, S.: On the notions of absolute continuity for functions of several variables. Fundam. Math. 173 (2002), 175-189. | DOI | MR | JFM
[12] Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. London Math. Soc., III. Ser. 11 (1961), 402-418. | DOI | MR | JFM
[13] Henstock, R.: Theory of Integration. Butterworths Mathematical Texts. Butterworths & Co., London (1963). | MR | JFM
[14] Henstock, R.: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). | MR | JFM
[15] Honzík, P., Malý, J.: Non-absolutely convergent integrals and singular integrals. Collect. Math. 65 (2014), 367-377. | DOI | MR | JFM
[16] Jarník, J., Kurzweil, J.: A non-absolutely convergent integral which admits $C^1$-transformations. Čas. Pěst. Mat. 109 (1984), 157-167. | MR | JFM
[17] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (1985), 116-139. | DOI | MR | JFM
[18] Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral. Czech. Math. J. 38 (1988), 8-48. | DOI | MR | JFM
[19] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral. Čas. Pěst. Mat. 108 (1983), 356-380. | MR | JFM
[20] Jurkat, W. B.: The divergence theorem and Perron integration with exceptional sets. Czech. Math. J. 43 (1993), 27-45. | DOI | MR | JFM
[21] Khintchine, A.: Sur une extension de l'intégrale de M. Denjoy. C. R. Acad. Sci. Paris, Sér. I Math. 162 (1916), 287-291 French. | JFM
[22] Kubota, Y.: An integral of the Denjoy type. Proc. Japan Acad. 40 (1964), 713-717. | DOI | MR | JFM
[23] Kuncová, K.: $BV$-packing integral in $\Bbb R^n$. \ Available at (2019). | arXiv | MR
[24] Kuncová, K., Malý, J.: Non-absolutely convergent integrals in metric spaces. J. Math. Anal. Appl. 401 (2013), 578-600. | DOI | MR | JFM
[25] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | DOI | MR | JFM
[26] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik, Bd. 26. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980), German. | DOI | MR | JFM
[27] Lusin, N.: Sur les propriétés de l'intégrale de M. Denjoy. C. R. Acad. Sci. Paris Sér. I Math. 155 (1912), 1475-1477 French. | MR | JFM
[28] Malý, J.: Non-absolutely convergent integrals with respect to distributions. Ann. Mat. Pura Appl. (4) 193 (2014), 1457-1484. | DOI | MR | JFM
[29] Malý, J., Pfeffer, W. F.: Henstock-Kurzweil integral on BV sets. Math. Bohem. 141 (2016), 217-237. | DOI | MR | JFM
[30] Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (1981), 614-632. | DOI | MR | JFM
[31] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel: The Influence of his Work on Mathematics and The Physical Sciences. Int. Christoffel Sym., Aachen and Monschau, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. | DOI | MR | JFM
[32] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications. Series in Real Analysis 15. World Scientific Publishing, Hackensack (2018). | DOI | MR | JFM
[33] Novikov, A., Pfeffer, W. F.: An invariant Riemann type integral defined by figures. Proc. Am. Math. Soc. 120 (1994), 849-853. | DOI | MR | JFM
[34] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber 14 (1914), 1-16 German. | JFM
[35] Pfeffer, W. F.: Une intégrale Riemannienne et le théorème de divergence. C. R. Acad. Sci. Paris, Sér. I Math. 299 (1984), 299-301 French. | MR | JFM
[36] Pfeffer, W. F.: The multidimensional fundamental theorem of calculus. J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. | DOI | MR | JFM
[37] Pfeffer, W. F.: The Gauss-Green theorem. Adv. Math. 87 (1991), 93-147. | DOI | MR | JFM
[38] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). | DOI | MR | JFM
[39] Pfeffer, W. F.: Derivatives and primitives. Sci. Math. Jpn. 55 (2002), 399-425. | MR | JFM
[40] Preiss, D., Thomson, B. S.: The approximate symmetric integral. Can. J. Math. 41 (1989), 508-555. | DOI | MR | JFM
[41] Saks, S.: Theory of the Integral. With two Additional Notes by Stefan Banach. Dover Publications, Mineola (1964). | MR | JFM
Cité par Sources :