On a generalization of Henstock-Kurzweil integrals
Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 393-422
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study a scale of integrals on the real line motivated by the $MC_{\alpha }$ integral by Ball and Preiss and some recent multidimensional constructions of integral. These integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most of the results are of comparison nature. Further, we show that our indefinite integrals are a.e. approximately differentiable. An example of approximate discontinuity of an indefinite integral is also presented.
@article{10_21136_MB_2019_0038_19,
author = {Mal\'y, Jan and Kuncov\'a, Krist\'yna},
title = {On a generalization of {Henstock-Kurzweil} integrals},
journal = {Mathematica Bohemica},
pages = {393--422},
publisher = {mathdoc},
volume = {144},
number = {4},
year = {2019},
doi = {10.21136/MB.2019.0038-19},
mrnumber = {4047344},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/}
}
TY - JOUR AU - Malý, Jan AU - Kuncová, Kristýna TI - On a generalization of Henstock-Kurzweil integrals JO - Mathematica Bohemica PY - 2019 SP - 393 EP - 422 VL - 144 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/ DO - 10.21136/MB.2019.0038-19 LA - en ID - 10_21136_MB_2019_0038_19 ER -
Malý, Jan; Kuncová, Kristýna. On a generalization of Henstock-Kurzweil integrals. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 393-422. doi: 10.21136/MB.2019.0038-19
Cité par Sources :