On a generalization of Henstock-Kurzweil integrals
Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 393-422.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a scale of integrals on the real line motivated by the $MC_{\alpha }$ integral by Ball and Preiss and some recent multidimensional constructions of integral. These integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most of the results are of comparison nature. Further, we show that our indefinite integrals are a.e. approximately differentiable. An example of approximate discontinuity of an indefinite integral is also presented.
DOI : 10.21136/MB.2019.0038-19
Classification : 26A39
Keywords: Henstock-Kurzweil integral
@article{10_21136_MB_2019_0038_19,
     author = {Mal\'y, Jan and Kuncov\'a, Krist\'yna},
     title = {On a generalization of {Henstock-Kurzweil} integrals},
     journal = {Mathematica Bohemica},
     pages = {393--422},
     publisher = {mathdoc},
     volume = {144},
     number = {4},
     year = {2019},
     doi = {10.21136/MB.2019.0038-19},
     mrnumber = {4047344},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/}
}
TY  - JOUR
AU  - Malý, Jan
AU  - Kuncová, Kristýna
TI  - On a generalization of Henstock-Kurzweil integrals
JO  - Mathematica Bohemica
PY  - 2019
SP  - 393
EP  - 422
VL  - 144
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/
DO  - 10.21136/MB.2019.0038-19
LA  - en
ID  - 10_21136_MB_2019_0038_19
ER  - 
%0 Journal Article
%A Malý, Jan
%A Kuncová, Kristýna
%T On a generalization of Henstock-Kurzweil integrals
%J Mathematica Bohemica
%D 2019
%P 393-422
%V 144
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/
%R 10.21136/MB.2019.0038-19
%G en
%F 10_21136_MB_2019_0038_19
Malý, Jan; Kuncová, Kristýna. On a generalization of Henstock-Kurzweil integrals. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 393-422. doi : 10.21136/MB.2019.0038-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-19/

Cité par Sources :