Keywords: restriction of an operator; spectral property; semi-Fredholm spectra; multiplication operator
@article{10_21136_MB_2019_0038_18,
author = {Carpintero, Carlos and Guti\'errez, Alexander and Rosas, Ennis and Sanabria, Jos\'e},
title = {A note on preservation of spectra for two given operators},
journal = {Mathematica Bohemica},
pages = {113--126},
year = {2020},
volume = {145},
number = {2},
doi = {10.21136/MB.2019.0038-18},
mrnumber = {4221824},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/}
}
TY - JOUR AU - Carpintero, Carlos AU - Gutiérrez, Alexander AU - Rosas, Ennis AU - Sanabria, José TI - A note on preservation of spectra for two given operators JO - Mathematica Bohemica PY - 2020 SP - 113 EP - 126 VL - 145 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/ DO - 10.21136/MB.2019.0038-18 LA - en ID - 10_21136_MB_2019_0038_18 ER -
%0 Journal Article %A Carpintero, Carlos %A Gutiérrez, Alexander %A Rosas, Ennis %A Sanabria, José %T A note on preservation of spectra for two given operators %J Mathematica Bohemica %D 2020 %P 113-126 %V 145 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/ %R 10.21136/MB.2019.0038-18 %G en %F 10_21136_MB_2019_0038_18
Carpintero, Carlos; Gutiérrez, Alexander; Rosas, Ennis; Sanabria, José. A note on preservation of spectra for two given operators. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 113-126. doi: 10.21136/MB.2019.0038-18
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004). | DOI | MR | JFM
[2] Aiena, P.: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251-263. | MR | JFM
[3] Aiena, P., Biondi, M. T., Carpintero, C.: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848. | DOI | MR | JFM
[4] Astudillo-Villaba, F. R., Castillo, R. E., Ramos-Fernández, J. C.: Multiplication operators on the spaces of functions of bounded {$p$}-variation in Wiener's sense. Real Anal. Exch. 42 (2017), 329-344. | DOI | MR | JFM
[5] Barnes, B. A.: The spectral and Fredholm theory of extensions of bounded linear operators. Proc. Am. Math. Soc. 105 (1989), 941-949. | DOI | MR | JFM
[6] Barnes, B. A.: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735-1740. | DOI | MR | JFM
[7] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. | DOI | MR | JFM
[8] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. | DOI | MR | JFM
[9] Carpintero, C., Muñoz, D., Rosas, E., Sanabria, J., García, O.: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215-1228. | DOI | MR | JFM
[10] Finch, J. K.: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61-69. | DOI | MR | JFM
[11] Heuser, H. G.: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1982). | MR | JFM
Cité par Sources :