A note on preservation of spectra for two given operators
Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 113-126
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded $p$-variation in Wiener's sense coincide. Additional illustrative results are given too.
We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded $p$-variation in Wiener's sense coincide. Additional illustrative results are given too.
DOI : 10.21136/MB.2019.0038-18
Classification : 47A10, 47A11, 47A53, 47A55
Keywords: restriction of an operator; spectral property; semi-Fredholm spectra; multiplication operator
@article{10_21136_MB_2019_0038_18,
     author = {Carpintero, Carlos and Guti\'errez, Alexander and Rosas, Ennis and Sanabria, Jos\'e},
     title = {A note on preservation of spectra for two given operators},
     journal = {Mathematica Bohemica},
     pages = {113--126},
     year = {2020},
     volume = {145},
     number = {2},
     doi = {10.21136/MB.2019.0038-18},
     mrnumber = {4221824},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/}
}
TY  - JOUR
AU  - Carpintero, Carlos
AU  - Gutiérrez, Alexander
AU  - Rosas, Ennis
AU  - Sanabria, José
TI  - A note on preservation of spectra for two given operators
JO  - Mathematica Bohemica
PY  - 2020
SP  - 113
EP  - 126
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/
DO  - 10.21136/MB.2019.0038-18
LA  - en
ID  - 10_21136_MB_2019_0038_18
ER  - 
%0 Journal Article
%A Carpintero, Carlos
%A Gutiérrez, Alexander
%A Rosas, Ennis
%A Sanabria, José
%T A note on preservation of spectra for two given operators
%J Mathematica Bohemica
%D 2020
%P 113-126
%V 145
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0038-18/
%R 10.21136/MB.2019.0038-18
%G en
%F 10_21136_MB_2019_0038_18
Carpintero, Carlos; Gutiérrez, Alexander; Rosas, Ennis; Sanabria, José. A note on preservation of spectra for two given operators. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 113-126. doi: 10.21136/MB.2019.0038-18

[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004). | DOI | MR | JFM

[2] Aiena, P.: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251-263. | MR | JFM

[3] Aiena, P., Biondi, M. T., Carpintero, C.: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848. | DOI | MR | JFM

[4] Astudillo-Villaba, F. R., Castillo, R. E., Ramos-Fernández, J. C.: Multiplication operators on the spaces of functions of bounded {$p$}-variation in Wiener's sense. Real Anal. Exch. 42 (2017), 329-344. | DOI | MR | JFM

[5] Barnes, B. A.: The spectral and Fredholm theory of extensions of bounded linear operators. Proc. Am. Math. Soc. 105 (1989), 941-949. | DOI | MR | JFM

[6] Barnes, B. A.: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735-1740. | DOI | MR | JFM

[7] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. | DOI | MR | JFM

[8] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. | DOI | MR | JFM

[9] Carpintero, C., Muñoz, D., Rosas, E., Sanabria, J., García, O.: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215-1228. | DOI | MR | JFM

[10] Finch, J. K.: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61-69. | DOI | MR | JFM

[11] Heuser, H. G.: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1982). | MR | JFM

Cité par Sources :