Keywords: Kurzweil integral; Young integral; Dushnik integral; Kurzweil-Stieltjes integral; Young-Stieltjes integral; Dushnik-Stieltjes integral; convergence theorem
@article{10_21136_MB_2019_0015_19,
author = {Hanung, Umi Mahnuna and Tvrd\'y, Milan},
title = {On the relationships between {Stieltjes} type integrals of {Young,} {Dushnik} and {Kurzweil}},
journal = {Mathematica Bohemica},
pages = {357--372},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2019.0015-19},
mrnumber = {4047342},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/}
}
TY - JOUR AU - Hanung, Umi Mahnuna AU - Tvrdý, Milan TI - On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil JO - Mathematica Bohemica PY - 2019 SP - 357 EP - 372 VL - 144 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/ DO - 10.21136/MB.2019.0015-19 LA - en ID - 10_21136_MB_2019_0015_19 ER -
%0 Journal Article %A Hanung, Umi Mahnuna %A Tvrdý, Milan %T On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil %J Mathematica Bohemica %D 2019 %P 357-372 %V 144 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/ %R 10.21136/MB.2019.0015-19 %G en %F 10_21136_MB_2019_0015_19
Hanung, Umi Mahnuna; Tvrdý, Milan. On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 357-372. doi: 10.21136/MB.2019.0015-19
[1] Ashordia, M.: On the Opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations. Math. Bohem. 141 (2016), 183-215. | DOI | MR | JFM
[2] Dushnik, B.: On the Stieltjes Integral. Thesis. University of Michigan, Ann Arbor (1931). | MR
[3] Federson, M., Bianconi, R., Barbanti, L.: Linear Volterra integral equations as the limit of discrete systems. Acta Math. Appl. Sin., Engl. Ser. 20 (2004), 623-640. | DOI | MR | JFM
[4] Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations. J. Differ. Equations 195 (2003), 313-331. | DOI | MR | JFM
[5] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations. Ill. J. Math. 3 (1959), 352-373. | DOI | MR | JFM
[6] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | DOI | MR | JFM
[7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica (56). North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1975). | MR | JFM
[8] Hönig, C. S.: Volterra-Stieltjes integral equations. Functional Differential Equations and Bifurcation. Proc. Conf., Inst. Ciênc. Mat. São Carlos, 1979 Lecture Notes in Math. 799. Springer, Berlin (1980), 173-216 A. F. Izé. | DOI | MR | JFM
[9] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | DOI | MR | JFM
[10] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). | DOI | MR | JFM
[11] MacNerney, J. S.: An integration-by-parts formula. Bull. Am. Math. Soc. 69 (1963), 803-805. | DOI | MR | JFM
[12] Meng, G., Zhang, M.: Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differ. Equations 254 (2013), 2196-2232. | DOI | MR | JFM
[13] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2018). | DOI | MR | JFM
[14] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space. Math. Bohem. 137 (2012), 365-381. | DOI | MR | JFM
[15] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303. | DOI | MR | JFM
[16] Saks, S.: Theory of the Integral. With two additional notes by Stefan Banach. Dover Publications, Mineola (1964). | MR | JFM
[17] Schwabik, Š.: On a modified sum integral of Stieltjes type. Čas. Pěst. Mat. 98 (1973), 274-277. | MR | JFM
[18] Schwabik, Š.: On the relation between Young's and Kurzweil's concept of Stieltjes integral. Čas. Pěst. Mat. 98 (1973), 237-251. | MR | JFM
[19] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM
[20] Schwabik, Š.: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425-447. | DOI | MR | JFM
[21] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. | DOI | MR | JFM
[22] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. II. Operator valued solutions. Math. Bohem. 125 (2000), 431-454. | DOI | MR | JFM
[23] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals. Math. Bohem. 126 (2001), 613-629. | DOI | MR | JFM
[24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing Company, Dordrecht; Academia (Publishing House of the Czechoslovak Academy of Sciences), Praha (1979). | MR | JFM
[25] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM
[26] Young, W. H.: On integration with respect to a function of bounded variation. Proc. Lond. Math. Soc. (2) 13 (1914), 109-150. | DOI | MR | JFM
Cité par Sources :