On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil
Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 357-372
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we explain the relationship between Stieltjes type integrals of Young, Dushnik and Kurzweil for functions with values in Banach spaces. To this aim also several new convergence theorems will be stated and proved.
In this paper we explain the relationship between Stieltjes type integrals of Young, Dushnik and Kurzweil for functions with values in Banach spaces. To this aim also several new convergence theorems will be stated and proved.
DOI : 10.21136/MB.2019.0015-19
Classification : 26A36, 26A39, 26A42
Keywords: Kurzweil integral; Young integral; Dushnik integral; Kurzweil-Stieltjes integral; Young-Stieltjes integral; Dushnik-Stieltjes integral; convergence theorem
@article{10_21136_MB_2019_0015_19,
     author = {Hanung, Umi Mahnuna and Tvrd\'y, Milan},
     title = {On the relationships between {Stieltjes} type integrals of {Young,} {Dushnik} and {Kurzweil}},
     journal = {Mathematica Bohemica},
     pages = {357--372},
     year = {2019},
     volume = {144},
     number = {4},
     doi = {10.21136/MB.2019.0015-19},
     mrnumber = {4047342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/}
}
TY  - JOUR
AU  - Hanung, Umi Mahnuna
AU  - Tvrdý, Milan
TI  - On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil
JO  - Mathematica Bohemica
PY  - 2019
SP  - 357
EP  - 372
VL  - 144
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/
DO  - 10.21136/MB.2019.0015-19
LA  - en
ID  - 10_21136_MB_2019_0015_19
ER  - 
%0 Journal Article
%A Hanung, Umi Mahnuna
%A Tvrdý, Milan
%T On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil
%J Mathematica Bohemica
%D 2019
%P 357-372
%V 144
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0015-19/
%R 10.21136/MB.2019.0015-19
%G en
%F 10_21136_MB_2019_0015_19
Hanung, Umi Mahnuna; Tvrdý, Milan. On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 357-372. doi: 10.21136/MB.2019.0015-19

[1] Ashordia, M.: On the Opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations. Math. Bohem. 141 (2016), 183-215. | DOI | MR | JFM

[2] Dushnik, B.: On the Stieltjes Integral. Thesis. University of Michigan, Ann Arbor (1931). | MR

[3] Federson, M., Bianconi, R., Barbanti, L.: Linear Volterra integral equations as the limit of discrete systems. Acta Math. Appl. Sin., Engl. Ser. 20 (2004), 623-640. | DOI | MR | JFM

[4] Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations. J. Differ. Equations 195 (2003), 313-331. | DOI | MR | JFM

[5] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations. Ill. J. Math. 3 (1959), 352-373. | DOI | MR | JFM

[6] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | DOI | MR | JFM

[7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica (56). North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1975). | MR | JFM

[8] Hönig, C. S.: Volterra-Stieltjes integral equations. Functional Differential Equations and Bifurcation. Proc. Conf., Inst. Ciênc. Mat. São Carlos, 1979 Lecture Notes in Math. 799. Springer, Berlin (1980), 173-216 A. F. Izé. | DOI | MR | JFM

[9] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | DOI | MR | JFM

[10] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). | DOI | MR | JFM

[11] MacNerney, J. S.: An integration-by-parts formula. Bull. Am. Math. Soc. 69 (1963), 803-805. | DOI | MR | JFM

[12] Meng, G., Zhang, M.: Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differ. Equations 254 (2013), 2196-2232. | DOI | MR | JFM

[13] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2018). | DOI | MR | JFM

[14] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space. Math. Bohem. 137 (2012), 365-381. | DOI | MR | JFM

[15] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303. | DOI | MR | JFM

[16] Saks, S.: Theory of the Integral. With two additional notes by Stefan Banach. Dover Publications, Mineola (1964). | MR | JFM

[17] Schwabik, Š.: On a modified sum integral of Stieltjes type. Čas. Pěst. Mat. 98 (1973), 274-277. | MR | JFM

[18] Schwabik, Š.: On the relation between Young's and Kurzweil's concept of Stieltjes integral. Čas. Pěst. Mat. 98 (1973), 237-251. | MR | JFM

[19] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM

[20] Schwabik, Š.: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425-447. | DOI | MR | JFM

[21] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. | DOI | MR | JFM

[22] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. II. Operator valued solutions. Math. Bohem. 125 (2000), 431-454. | DOI | MR | JFM

[23] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals. Math. Bohem. 126 (2001), 613-629. | DOI | MR | JFM

[24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing Company, Dordrecht; Academia (Publishing House of the Czechoslovak Academy of Sciences), Praha (1979). | MR | JFM

[25] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM

[26] Young, W. H.: On integration with respect to a function of bounded variation. Proc. Lond. Math. Soc. (2) 13 (1914), 109-150. | DOI | MR | JFM

Cité par Sources :