Bound sets and two-point boundary value problems for second order differential systems
Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 373-392
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
DOI : 10.21136/MB.2019.0014-19
Classification : 34B15, 47H11
Keywords: two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition
@article{10_21136_MB_2019_0014_19,
     author = {Mawhin, Jean and Szyma\'nska-D\k{e}bowska, Katarzyna},
     title = {Bound sets and two-point boundary value problems for second order differential systems},
     journal = {Mathematica Bohemica},
     pages = {373--392},
     year = {2019},
     volume = {144},
     number = {4},
     doi = {10.21136/MB.2019.0014-19},
     mrnumber = {4047343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/}
}
TY  - JOUR
AU  - Mawhin, Jean
AU  - Szymańska-Dębowska, Katarzyna
TI  - Bound sets and two-point boundary value problems for second order differential systems
JO  - Mathematica Bohemica
PY  - 2019
SP  - 373
EP  - 392
VL  - 144
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/
DO  - 10.21136/MB.2019.0014-19
LA  - en
ID  - 10_21136_MB_2019_0014_19
ER  - 
%0 Journal Article
%A Mawhin, Jean
%A Szymańska-Dębowska, Katarzyna
%T Bound sets and two-point boundary value problems for second order differential systems
%J Mathematica Bohemica
%D 2019
%P 373-392
%V 144
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/
%R 10.21136/MB.2019.0014-19
%G en
%F 10_21136_MB_2019_0014_19
Mawhin, Jean; Szymańska-Dębowska, Katarzyna. Bound sets and two-point boundary value problems for second order differential systems. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 373-392. doi: 10.21136/MB.2019.0014-19

[1] Amster, P., Haddad, J.: A Hartman-Nagumo type condition for a class of contractible domains. Topol. Methods Nonlinear Anal. 41 (2013), 287-304. | MR | JFM

[2] Bass, R. W.: On non-linear repulsive forces. Contributions to the Theory of Nonlinear Oscillations, Volume IV. Annals of Mathematics Studies 41. Princeton University Press, Princeton (1958), 201-211 S. Lefschetz. | DOI | MR | JFM

[3] Bebernes, J. W.: A simple alternative problem for finding periodic solutions of second order ordinary differential systems. Proc. Am. Math. Soc. 42 (1974), 121-127. | DOI | MR | JFM

[4] Bernstein, S. N.: Sur les équations du calcul des variations. Ann. Sci. Éc. Norm. Supér., Sér. III. 29 (1912), 431-485 French \99999JFM99999 43.0460.01. | DOI | MR

[5] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions. Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). | DOI | MR | JFM

[6] Fabry, C.: Nagumo conditions for systems of second-order differential equations. J. Math. Anal. Appl. 107 (1985), 132-143. | DOI | MR | JFM

[7] Fewster-Young, N.: A singular Hartman inequality for existence of solutions to nonlinear systems of singular, second order boundary value problems. Int. J. Differ. Equ. Appl. 14 (2015), 195-228. | DOI | MR | JFM

[8] Fewster-Young, N.: A priori bounds and existence results for singular boundary value problems. Electron. J. Qual. Theory Differ. Equ. (2016), 1-15. | DOI | MR | JFM

[9] Frigon, M.: Boundary and periodic value problems for systems of nonlinear second order differential equations. Topol. Methods Nonlinear Anal. 1 (1993), 259-274. | DOI | MR | JFM

[10] Frigon, M.: Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition. Differ. Integral Equ. 8 (1995), 1789-1804. | MR | JFM

[11] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics 568. Springer, Cham (1977). | DOI | MR | JFM

[12] Hartman, P.: On boundary value problems for systems of ordinary, nonlinear, second order differential equations. Trans. Am. Math. Soc. 96 (1960), 493-509. | DOI | MR | JFM

[13] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964). | MR | JFM

[14] Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. J. Anal. Math. 5 (1956/1957), 197-272. | DOI | MR | JFM

[15] Henderson, J., Sheng, Q., Tisdell, C. C.: Constructive existence results for solutions to systems of boundary value problems via general Lyapunov methods. Differ. Equ. Appl. 9 (2017), 57-68. | DOI | MR | JFM

[16] Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Grundlehren der mathematischen Wissenschaften 305. Springer, Berlin (1993). | DOI | MR | JFM

[17] Knobloch, H.-W.: On the existence of periodic solutions for second order vector differential equations. J. Differ. Equations 9 (1971), 67-85. | DOI | MR | JFM

[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér., Sér. III. 51 (1934), 45-78 French. | DOI | MR | JFM

[19] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics 40. AMS, Providence (1979). | DOI | MR | JFM

[20] Mawhin, J.: Variations on Poincaré-Miranda's theorem. Adv. Nonlinear Stud. 13 (2013), 209-217. | DOI | MR | JFM

[21] Mawhin, J., Szymańska-Dębowska, K.: Convex sets and second order systems with nonlocal boundary conditions at resonance. Proc. Am. Math. Soc. 145 (2017), 2023-2032. | DOI | MR | JFM

[22] Nagumo, M.: Über die Differentialgleichung $y'' = f(t, y, y')$. Proc. Phys.-Math. Soc. Japan, III. Ser. 19 (1937), 861-866 German. | JFM

[23] Opial, Z.: Sur la limitation des dérivées des solutions bornées d'un système d'équations différentielles du second ordre. Ann. Polon. Math. 10 (1961), 73-79 French. | DOI | MR | JFM

[24] Rouche, N., Mawhin, J.: Équations différentielles ordinaires. Tome I: Théorie générale. Tome II: Stabilité et solutions périodiques. Masson et Cie, Paris French (1973). | MR | JFM

[25] Schmitt, K., Thompson, R.: Boundary value problems for infinite systems of second-order differential equations. J. Differ. Equations 18 (1975), 277-295. | DOI | MR | JFM

[26] Szymańska-Dębowska, K.: On a generalization of the Miranda Theorem and its application to boundary value problems. J. Differ. Equations 258 (2015), 2686-2700. | DOI | MR | JFM

[27] Taddei, V.: Two-points boundary value problems for Carathéodory second order equations. Arch. Math., Brno 44 (2008), 93-103. | MR | JFM

[28] Taddei, V., Zanolin, F.: Bound sets and two-point boundary value problems for second order differential equations. Georgian Math. J. 14 (2007), 385-402. | DOI | MR | JFM

[29] Thorpe, J. A.: Elementary Topics in Differential Geometry. Undergraduate Texts in Mathematics. Springer, New York (1979). | DOI | MR | JFM

[30] Tisdell, C. C., Tan, L. H.: On vector boundary value problems without growth restrictions. JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 137, 10 pages \99999MR99999 2191606 \filbreak. | MR | JFM

Cité par Sources :