Keywords: two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition
@article{10_21136_MB_2019_0014_19,
author = {Mawhin, Jean and Szyma\'nska-D\k{e}bowska, Katarzyna},
title = {Bound sets and two-point boundary value problems for second order differential systems},
journal = {Mathematica Bohemica},
pages = {373--392},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2019.0014-19},
mrnumber = {4047343},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/}
}
TY - JOUR AU - Mawhin, Jean AU - Szymańska-Dębowska, Katarzyna TI - Bound sets and two-point boundary value problems for second order differential systems JO - Mathematica Bohemica PY - 2019 SP - 373 EP - 392 VL - 144 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/ DO - 10.21136/MB.2019.0014-19 LA - en ID - 10_21136_MB_2019_0014_19 ER -
%0 Journal Article %A Mawhin, Jean %A Szymańska-Dębowska, Katarzyna %T Bound sets and two-point boundary value problems for second order differential systems %J Mathematica Bohemica %D 2019 %P 373-392 %V 144 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0014-19/ %R 10.21136/MB.2019.0014-19 %G en %F 10_21136_MB_2019_0014_19
Mawhin, Jean; Szymańska-Dębowska, Katarzyna. Bound sets and two-point boundary value problems for second order differential systems. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 373-392. doi: 10.21136/MB.2019.0014-19
[1] Amster, P., Haddad, J.: A Hartman-Nagumo type condition for a class of contractible domains. Topol. Methods Nonlinear Anal. 41 (2013), 287-304. | MR | JFM
[2] Bass, R. W.: On non-linear repulsive forces. Contributions to the Theory of Nonlinear Oscillations, Volume IV. Annals of Mathematics Studies 41. Princeton University Press, Princeton (1958), 201-211 S. Lefschetz. | DOI | MR | JFM
[3] Bebernes, J. W.: A simple alternative problem for finding periodic solutions of second order ordinary differential systems. Proc. Am. Math. Soc. 42 (1974), 121-127. | DOI | MR | JFM
[4] Bernstein, S. N.: Sur les équations du calcul des variations. Ann. Sci. Éc. Norm. Supér., Sér. III. 29 (1912), 431-485 French \99999JFM99999 43.0460.01. | DOI | MR
[5] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions. Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). | DOI | MR | JFM
[6] Fabry, C.: Nagumo conditions for systems of second-order differential equations. J. Math. Anal. Appl. 107 (1985), 132-143. | DOI | MR | JFM
[7] Fewster-Young, N.: A singular Hartman inequality for existence of solutions to nonlinear systems of singular, second order boundary value problems. Int. J. Differ. Equ. Appl. 14 (2015), 195-228. | DOI | MR | JFM
[8] Fewster-Young, N.: A priori bounds and existence results for singular boundary value problems. Electron. J. Qual. Theory Differ. Equ. (2016), 1-15. | DOI | MR | JFM
[9] Frigon, M.: Boundary and periodic value problems for systems of nonlinear second order differential equations. Topol. Methods Nonlinear Anal. 1 (1993), 259-274. | DOI | MR | JFM
[10] Frigon, M.: Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition. Differ. Integral Equ. 8 (1995), 1789-1804. | MR | JFM
[11] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics 568. Springer, Cham (1977). | DOI | MR | JFM
[12] Hartman, P.: On boundary value problems for systems of ordinary, nonlinear, second order differential equations. Trans. Am. Math. Soc. 96 (1960), 493-509. | DOI | MR | JFM
[13] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964). | MR | JFM
[14] Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. J. Anal. Math. 5 (1956/1957), 197-272. | DOI | MR | JFM
[15] Henderson, J., Sheng, Q., Tisdell, C. C.: Constructive existence results for solutions to systems of boundary value problems via general Lyapunov methods. Differ. Equ. Appl. 9 (2017), 57-68. | DOI | MR | JFM
[16] Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Grundlehren der mathematischen Wissenschaften 305. Springer, Berlin (1993). | DOI | MR | JFM
[17] Knobloch, H.-W.: On the existence of periodic solutions for second order vector differential equations. J. Differ. Equations 9 (1971), 67-85. | DOI | MR | JFM
[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér., Sér. III. 51 (1934), 45-78 French. | DOI | MR | JFM
[19] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics 40. AMS, Providence (1979). | DOI | MR | JFM
[20] Mawhin, J.: Variations on Poincaré-Miranda's theorem. Adv. Nonlinear Stud. 13 (2013), 209-217. | DOI | MR | JFM
[21] Mawhin, J., Szymańska-Dębowska, K.: Convex sets and second order systems with nonlocal boundary conditions at resonance. Proc. Am. Math. Soc. 145 (2017), 2023-2032. | DOI | MR | JFM
[22] Nagumo, M.: Über die Differentialgleichung $y'' = f(t, y, y')$. Proc. Phys.-Math. Soc. Japan, III. Ser. 19 (1937), 861-866 German. | JFM
[23] Opial, Z.: Sur la limitation des dérivées des solutions bornées d'un système d'équations différentielles du second ordre. Ann. Polon. Math. 10 (1961), 73-79 French. | DOI | MR | JFM
[24] Rouche, N., Mawhin, J.: Équations différentielles ordinaires. Tome I: Théorie générale. Tome II: Stabilité et solutions périodiques. Masson et Cie, Paris French (1973). | MR | JFM
[25] Schmitt, K., Thompson, R.: Boundary value problems for infinite systems of second-order differential equations. J. Differ. Equations 18 (1975), 277-295. | DOI | MR | JFM
[26] Szymańska-Dębowska, K.: On a generalization of the Miranda Theorem and its application to boundary value problems. J. Differ. Equations 258 (2015), 2686-2700. | DOI | MR | JFM
[27] Taddei, V.: Two-points boundary value problems for Carathéodory second order equations. Arch. Math., Brno 44 (2008), 93-103. | MR | JFM
[28] Taddei, V., Zanolin, F.: Bound sets and two-point boundary value problems for second order differential equations. Georgian Math. J. 14 (2007), 385-402. | DOI | MR | JFM
[29] Thorpe, J. A.: Elementary Topics in Differential Geometry. Undergraduate Texts in Mathematics. Springer, New York (1979). | DOI | MR | JFM
[30] Tisdell, C. C., Tan, L. H.: On vector boundary value problems without growth restrictions. JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 137, 10 pages \99999MR99999 2191606 \filbreak. | MR | JFM
Cité par Sources :