On oscillatory first order neutral impulsive difference equations
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 361-375
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect.
We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect.
DOI : 10.21136/MB.2019.0002-18
Classification : 39A10, 39A12
Keywords: oscillation; nonoscillation; impulsive difference equation; nonlinear neutral difference equation; delay
@article{10_21136_MB_2019_0002_18,
     author = {Tripathy, Arun Kumar and Chhatria, Gokula Nanda},
     title = {On oscillatory first order neutral impulsive difference equations},
     journal = {Mathematica Bohemica},
     pages = {361--375},
     year = {2020},
     volume = {145},
     number = {4},
     doi = {10.21136/MB.2019.0002-18},
     mrnumber = {4221839},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/}
}
TY  - JOUR
AU  - Tripathy, Arun Kumar
AU  - Chhatria, Gokula Nanda
TI  - On oscillatory first order neutral impulsive difference equations
JO  - Mathematica Bohemica
PY  - 2020
SP  - 361
EP  - 375
VL  - 145
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/
DO  - 10.21136/MB.2019.0002-18
LA  - en
ID  - 10_21136_MB_2019_0002_18
ER  - 
%0 Journal Article
%A Tripathy, Arun Kumar
%A Chhatria, Gokula Nanda
%T On oscillatory first order neutral impulsive difference equations
%J Mathematica Bohemica
%D 2020
%P 361-375
%V 145
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/
%R 10.21136/MB.2019.0002-18
%G en
%F 10_21136_MB_2019_0002_18
Tripathy, Arun Kumar; Chhatria, Gokula Nanda. On oscillatory first order neutral impulsive difference equations. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 361-375. doi: 10.21136/MB.2019.0002-18

[1] Lakshmikantham, V., Bainov, D. D., Simieonov, P. S.: Oscillation Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). | DOI | MR | JFM

[2] Li, J., Shen, J.: Positive solutions for first order difference equations with impulses. Int. J. Difference Equ. 1 (2006), 225-239. | MR | JFM

[3] Li, X., Xi, Q.: Oscillatory and asymptotic properties of impulsive difference equations with time-varying delays. Int. J. Difference Equ. 4 (2009), 201-209. | MR

[4] Li, Q., Zhang, Z., Guo, F., Liu, Z., Liang, H.: Oscillatory criteria for third-order difference equation with impulses. J. Comput. Appl. Math. 225 (2009), 80-86. | DOI | MR | JFM

[5] Lu, W., Ge, W., Zhao, Z.: Oscillatory criteria for third-order nonlinear difference equation with impulses. J. Comput. Appl. Math. 234 (2010), 3366-3372. | DOI | MR | JFM

[6] Parhi, N., Tripathy, A. K.: Oscillation criteria for forced nonlinear neutral delay difference equations of first order. Differ. Equ. Dyn. Syst. 8 (2000), 81-97. | MR | JFM

[7] Parhi, N., Tripathy, A. K.: On asymptotic behaviour and oscillation of forced first order nonlinear neutral difference equations. Fasc. Math. 32 (2001), 83-95. | MR | JFM

[8] Parhi, N., Tripathy, A. K.: Oscillation of a class of neutral difference equations of first order. J. Difference Equ. Appl. 9 (2003), 933-946. | DOI | MR | JFM

[9] Parhi, N., Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order. Czech. Math. J. 53 (2003), 83-101. | DOI | MR | JFM

[10] Peng, M.: Oscillation theorems for second-order nonlinear neutral delay difference equations with impulses. Comput. Math. Appl. 44 (2002), 741-748. | DOI | MR | JFM

[11] Peng, M.: Oscillation criteria for second-order impulsive delay difference equations. Appl. Math. Comput. 146 (2003), 227-235. | DOI | MR | JFM

[12] Tripathy, A. K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 4 (2014), 89-101. | DOI | MR | JFM

[13] Wang, P., Wang, W.: Boundary value problems for first order impulsive difference equations. Int. J. Difference Equ. 1 (2006), 249-259. | MR | JFM

[14] Wei, G. P.: The persistance of nonoscillatory solutions of difference equation under impulsive perturbations. Comput. Math. Appl. 50 (2005), 1579-1586. | DOI | MR | JFM

[15] Zhang, H., Chen, L.: Oscillation criteria for a class of second-order impulsive delay difference equations. Adv. Complex Syst. 9 (2006), 69-76. | DOI | MR | JFM

Cité par Sources :