On oscillatory first order neutral impulsive difference equations
Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 361-375
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect.
DOI :
10.21136/MB.2019.0002-18
Classification :
39A10, 39A12
Keywords: oscillation; nonoscillation; impulsive difference equation; nonlinear neutral difference equation; delay
Keywords: oscillation; nonoscillation; impulsive difference equation; nonlinear neutral difference equation; delay
@article{10_21136_MB_2019_0002_18,
author = {Tripathy, Arun Kumar and Chhatria, Gokula Nanda},
title = {On oscillatory first order neutral impulsive difference equations},
journal = {Mathematica Bohemica},
pages = {361--375},
publisher = {mathdoc},
volume = {145},
number = {4},
year = {2020},
doi = {10.21136/MB.2019.0002-18},
mrnumber = {4221839},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/}
}
TY - JOUR AU - Tripathy, Arun Kumar AU - Chhatria, Gokula Nanda TI - On oscillatory first order neutral impulsive difference equations JO - Mathematica Bohemica PY - 2020 SP - 361 EP - 375 VL - 145 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/ DO - 10.21136/MB.2019.0002-18 LA - en ID - 10_21136_MB_2019_0002_18 ER -
%0 Journal Article %A Tripathy, Arun Kumar %A Chhatria, Gokula Nanda %T On oscillatory first order neutral impulsive difference equations %J Mathematica Bohemica %D 2020 %P 361-375 %V 145 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0002-18/ %R 10.21136/MB.2019.0002-18 %G en %F 10_21136_MB_2019_0002_18
Tripathy, Arun Kumar; Chhatria, Gokula Nanda. On oscillatory first order neutral impulsive difference equations. Mathematica Bohemica, Tome 145 (2020) no. 4, pp. 361-375. doi: 10.21136/MB.2019.0002-18
Cité par Sources :