Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 191-202
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.
We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.
DOI : 10.21136/MB.2018.0141-17
Classification : 30C45, 30C80
Keywords: $2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation
@article{10_21136_MB_2018_0141_17,
     author = {Aghalary, Rasoul and Kazemzadeh, Jafar},
     title = {Some properties of certain subclasses of bounded {Mocanu} variation with respect to $2k$-symmetric conjugate points},
     journal = {Mathematica Bohemica},
     pages = {191--202},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0141-17},
     mrnumber = {3974187},
     zbl = {07088845},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/}
}
TY  - JOUR
AU  - Aghalary, Rasoul
AU  - Kazemzadeh, Jafar
TI  - Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points
JO  - Mathematica Bohemica
PY  - 2019
SP  - 191
EP  - 202
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/
DO  - 10.21136/MB.2018.0141-17
LA  - en
ID  - 10_21136_MB_2018_0141_17
ER  - 
%0 Journal Article
%A Aghalary, Rasoul
%A Kazemzadeh, Jafar
%T Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points
%J Mathematica Bohemica
%D 2019
%P 191-202
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/
%R 10.21136/MB.2018.0141-17
%G en
%F 10_21136_MB_2018_0141_17
Aghalary, Rasoul; Kazemzadeh, Jafar. Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 191-202. doi: 10.21136/MB.2018.0141-17

[1] Eenigenberg, P., Miller, S. S., Mocanu, P. T., Reade, M. O.: On a Briot-Bouquet differential subordination. General Inequalities 3 International Series of Numerical Mathematics 64. Birkhäuser, Basel (1983), 339-348 E. F. Beckenbach et al. | DOI | MR | JFM

[2] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). | DOI | MR | JFM

[3] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). | DOI | MR | JFM

[4] Noor, K. I.: On subclasses of close-to-convex functions of higher order. Int. J. Math. Math. Sci. 15 (1992), 279-289. | DOI | MR | JFM

[5] Padmanabhan, K. S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Pol. Math. 31 (1976), 311-323. | DOI | MR | JFM

[6] Pinchuk, B.: Functions with bounded boundary rotation. Isr. J. Math. 10 (1971), 6-16. | DOI | MR | JFM

[7] Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Japan. 11 (1959), 72-75. | DOI | MR | JFM

[8] Wang, Z.-G., Gao, C.-Y.: On starlike and convex functions with respect to $2k$-symmetric conjugate points. Tamsui Oxf. J. Math. Sci. 24 (2008), 277-287. | MR | JFM

[9] Wang, Z.-G., Gao, C.-Y., Yuan, S.-M.: On certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. J. Math. Anal. Appl. 322 (2006), 97-106. | DOI | MR | JFM

Cité par Sources :