Keywords: $2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation
@article{10_21136_MB_2018_0141_17,
author = {Aghalary, Rasoul and Kazemzadeh, Jafar},
title = {Some properties of certain subclasses of bounded {Mocanu} variation with respect to $2k$-symmetric conjugate points},
journal = {Mathematica Bohemica},
pages = {191--202},
year = {2019},
volume = {144},
number = {2},
doi = {10.21136/MB.2018.0141-17},
mrnumber = {3974187},
zbl = {07088845},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/}
}
TY - JOUR AU - Aghalary, Rasoul AU - Kazemzadeh, Jafar TI - Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points JO - Mathematica Bohemica PY - 2019 SP - 191 EP - 202 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/ DO - 10.21136/MB.2018.0141-17 LA - en ID - 10_21136_MB_2018_0141_17 ER -
%0 Journal Article %A Aghalary, Rasoul %A Kazemzadeh, Jafar %T Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points %J Mathematica Bohemica %D 2019 %P 191-202 %V 144 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0141-17/ %R 10.21136/MB.2018.0141-17 %G en %F 10_21136_MB_2018_0141_17
Aghalary, Rasoul; Kazemzadeh, Jafar. Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 191-202. doi: 10.21136/MB.2018.0141-17
[1] Eenigenberg, P., Miller, S. S., Mocanu, P. T., Reade, M. O.: On a Briot-Bouquet differential subordination. General Inequalities 3 International Series of Numerical Mathematics 64. Birkhäuser, Basel (1983), 339-348 E. F. Beckenbach et al. | DOI | MR | JFM
[2] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). | DOI | MR | JFM
[3] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). | DOI | MR | JFM
[4] Noor, K. I.: On subclasses of close-to-convex functions of higher order. Int. J. Math. Math. Sci. 15 (1992), 279-289. | DOI | MR | JFM
[5] Padmanabhan, K. S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Pol. Math. 31 (1976), 311-323. | DOI | MR | JFM
[6] Pinchuk, B.: Functions with bounded boundary rotation. Isr. J. Math. 10 (1971), 6-16. | DOI | MR | JFM
[7] Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Japan. 11 (1959), 72-75. | DOI | MR | JFM
[8] Wang, Z.-G., Gao, C.-Y.: On starlike and convex functions with respect to $2k$-symmetric conjugate points. Tamsui Oxf. J. Math. Sci. 24 (2008), 277-287. | MR | JFM
[9] Wang, Z.-G., Gao, C.-Y., Yuan, S.-M.: On certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. J. Math. Anal. Appl. 322 (2006), 97-106. | DOI | MR | JFM
Cité par Sources :