Keywords: fractional derivative; fractional integral; existence of solution; fractional differential equation; fixed point theorem
@article{10_21136_MB_2018_0135_17,
author = {Bhairat, Sandeep P. and Dhaigude, Dnyanoba-Bhaurao},
title = {Existence of solutions of generalized fractional differential equation with nonlocal initial condition},
journal = {Mathematica Bohemica},
pages = {203--220},
year = {2019},
volume = {144},
number = {2},
doi = {10.21136/MB.2018.0135-17},
mrnumber = {3974188},
zbl = {07088846},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/}
}
TY - JOUR AU - Bhairat, Sandeep P. AU - Dhaigude, Dnyanoba-Bhaurao TI - Existence of solutions of generalized fractional differential equation with nonlocal initial condition JO - Mathematica Bohemica PY - 2019 SP - 203 EP - 220 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/ DO - 10.21136/MB.2018.0135-17 LA - en ID - 10_21136_MB_2018_0135_17 ER -
%0 Journal Article %A Bhairat, Sandeep P. %A Dhaigude, Dnyanoba-Bhaurao %T Existence of solutions of generalized fractional differential equation with nonlocal initial condition %J Mathematica Bohemica %D 2019 %P 203-220 %V 144 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/ %R 10.21136/MB.2018.0135-17 %G en %F 10_21136_MB_2018_0135_17
Bhairat, Sandeep P.; Dhaigude, Dnyanoba-Bhaurao. Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 203-220. doi: 10.21136/MB.2018.0135-17
[1] Abbas, S., Benchohra, M., Lagreg, J.-E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Solitons Fractals 102 (2017), 47-71. | DOI | MR | JFM
[2] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973-1033. | DOI | MR | JFM
[3] Bagley, R. L., Torvik, P. J.: A different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), 741-748. | DOI | JFM
[4] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. | DOI | JFM
[5] Bagley, R. L., Torvik, P. J.: On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51 (1984), 294-298. | DOI | JFM
[6] Bhairat, S. P.: New approach to existence of solution of weighted Cauchy-type problem. Available at , 10 pages. | arXiv
[7] Bhairat, S. P., Dhaigude, D. B.: Existence and stability of fractional differential equations involving generalized Katugampola derivative. Available at https://arxiv.org/ abs/1709.08838 (2017), 15 pages.
[8] Chitalkar-Dhaigude, C. D., Bhairat, S. P., Dhaigude, D. B.: Solution of fractional differential equations involving Hilfer fractional derivative: Method of successive approximations. Bull. Marathwada Math. Soc. 18 (2017), 1-13.
[9] Dhaigude, D. B., Bhairat, S. P.: Existence and continuation of solutions of Hilfer fractional differential equations. Available at , 18 pages. | arXiv | MR
[10] Dhaigude, D. B., Bhairat, S. P.: Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Commun. Appl. Anal. 22 (2017), 121-134. | MR
[11] Dhaigude, D. B., Bhairat, S. P.: On existence and approximation of solution of nonlinear Hilfer fractional differential equations. (to appear) in Int. J. Pure Appl. Math. Available at , 9 pages. | arXiv | MR
[12] Dhaigude, D. B., Bhairat, S. P.: Local existence and uniqueness of solutions for Hilfer-Hadamard fractional differential problem. Nonlinear Dyn. Syst. Theory 18 (2018), 144-153. | MR
[13] Dhaigude, D. B., Bhairat, S. P.: Ulam stability for system of nonlinear implicit fractional differential equations. Progress in Nonlinear Dynamics and Chaos 6 (2018), 29-38. | DOI
[14] Furati, K. M., Kassim, M. D., Tatar, N.-E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64 (2012), 1616-1626. | DOI | MR | JFM
[15] Furati, K. M., Tatar, N.-E.: An existence result for a nonlocal fractional differential problem. J. Fractional Calc. 26 (2004), 43-51. | MR | JFM
[16] Gaafar, F. M.: Continuous and integrable solutions of a nonlinear Cauchy problem of fractional order with nonlocal conditions. J. Egypt. Math. Soc. 22 (2014), 341-347. | DOI | MR | JFM
[17] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, London (2000). | DOI | MR | JFM
[18] Hilfer, R.: Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics 284 (2002), 399-408. | DOI | MR
[19] Kassim, M. D., Tatar, N.-E.: Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2013 (2013), Article ID 605029, 12 pages. | DOI | MR
[20] Katugampola, U. N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218 (2011), 860-865. | DOI | MR | JFM
[21] Katugampola, U. N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6 (2014), 1-15. | MR | JFM
[22] Katugampola, U. N.: Existence and uniqueness results for a class of generalized fractional differenital equations. Available at (2016). | arXiv
[23] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM
[24] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelastisity. An Introduction to Mathematical Models. World Scientific, Hackensack (2010). | DOI | MR | JFM
[25] Oliveira, D. S., Oliveira, E. Capelas de: Hilfer-Katugampola fractional derivative. Available at (2017). | arXiv | MR
[26] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). | MR | JFM
[27] Salamooni, A. Y. A., Pawar, D. D.: Hilfer-Hadamard-type fractional differential equation with Cauchy-type problem. Available at , 18 pages. | arXiv
[28] Wang, J., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266 (2015), 850-859. | DOI | MR
Cité par Sources :