Existence of solutions of generalized fractional differential equation with nonlocal initial condition
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 203-220
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
DOI : 10.21136/MB.2018.0135-17
Classification : 26A33, 34A08, 34A12, 47H10
Keywords: fractional derivative; fractional integral; existence of solution; fractional differential equation; fixed point theorem
@article{10_21136_MB_2018_0135_17,
     author = {Bhairat, Sandeep P. and Dhaigude, Dnyanoba-Bhaurao},
     title = {Existence of solutions of generalized fractional differential equation with nonlocal initial condition},
     journal = {Mathematica Bohemica},
     pages = {203--220},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0135-17},
     mrnumber = {3974188},
     zbl = {07088846},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/}
}
TY  - JOUR
AU  - Bhairat, Sandeep P.
AU  - Dhaigude, Dnyanoba-Bhaurao
TI  - Existence of solutions of generalized fractional differential equation with nonlocal initial condition
JO  - Mathematica Bohemica
PY  - 2019
SP  - 203
EP  - 220
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/
DO  - 10.21136/MB.2018.0135-17
LA  - en
ID  - 10_21136_MB_2018_0135_17
ER  - 
%0 Journal Article
%A Bhairat, Sandeep P.
%A Dhaigude, Dnyanoba-Bhaurao
%T Existence of solutions of generalized fractional differential equation with nonlocal initial condition
%J Mathematica Bohemica
%D 2019
%P 203-220
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0135-17/
%R 10.21136/MB.2018.0135-17
%G en
%F 10_21136_MB_2018_0135_17
Bhairat, Sandeep P.; Dhaigude, Dnyanoba-Bhaurao. Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 203-220. doi: 10.21136/MB.2018.0135-17

[1] Abbas, S., Benchohra, M., Lagreg, J.-E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Solitons Fractals 102 (2017), 47-71. | DOI | MR | JFM

[2] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973-1033. | DOI | MR | JFM

[3] Bagley, R. L., Torvik, P. J.: A different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), 741-748. | DOI | JFM

[4] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. | DOI | JFM

[5] Bagley, R. L., Torvik, P. J.: On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51 (1984), 294-298. | DOI | JFM

[6] Bhairat, S. P.: New approach to existence of solution of weighted Cauchy-type problem. Available at , 10 pages. | arXiv

[7] Bhairat, S. P., Dhaigude, D. B.: Existence and stability of fractional differential equations involving generalized Katugampola derivative. Available at https://arxiv.org/ abs/1709.08838 (2017), 15 pages.

[8] Chitalkar-Dhaigude, C. D., Bhairat, S. P., Dhaigude, D. B.: Solution of fractional differential equations involving Hilfer fractional derivative: Method of successive approximations. Bull. Marathwada Math. Soc. 18 (2017), 1-13.

[9] Dhaigude, D. B., Bhairat, S. P.: Existence and continuation of solutions of Hilfer fractional differential equations. Available at , 18 pages. | arXiv | MR

[10] Dhaigude, D. B., Bhairat, S. P.: Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Commun. Appl. Anal. 22 (2017), 121-134. | MR

[11] Dhaigude, D. B., Bhairat, S. P.: On existence and approximation of solution of nonlinear Hilfer fractional differential equations. (to appear) in Int. J. Pure Appl. Math. Available at , 9 pages. | arXiv | MR

[12] Dhaigude, D. B., Bhairat, S. P.: Local existence and uniqueness of solutions for Hilfer-Hadamard fractional differential problem. Nonlinear Dyn. Syst. Theory 18 (2018), 144-153. | MR

[13] Dhaigude, D. B., Bhairat, S. P.: Ulam stability for system of nonlinear implicit fractional differential equations. Progress in Nonlinear Dynamics and Chaos 6 (2018), 29-38. | DOI

[14] Furati, K. M., Kassim, M. D., Tatar, N.-E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64 (2012), 1616-1626. | DOI | MR | JFM

[15] Furati, K. M., Tatar, N.-E.: An existence result for a nonlocal fractional differential problem. J. Fractional Calc. 26 (2004), 43-51. | MR | JFM

[16] Gaafar, F. M.: Continuous and integrable solutions of a nonlinear Cauchy problem of fractional order with nonlocal conditions. J. Egypt. Math. Soc. 22 (2014), 341-347. | DOI | MR | JFM

[17] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, London (2000). | DOI | MR | JFM

[18] Hilfer, R.: Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics 284 (2002), 399-408. | DOI | MR

[19] Kassim, M. D., Tatar, N.-E.: Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2013 (2013), Article ID 605029, 12 pages. | DOI | MR

[20] Katugampola, U. N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218 (2011), 860-865. | DOI | MR | JFM

[21] Katugampola, U. N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6 (2014), 1-15. | MR | JFM

[22] Katugampola, U. N.: Existence and uniqueness results for a class of generalized fractional differenital equations. Available at (2016). | arXiv

[23] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM

[24] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelastisity. An Introduction to Mathematical Models. World Scientific, Hackensack (2010). | DOI | MR | JFM

[25] Oliveira, D. S., Oliveira, E. Capelas de: Hilfer-Katugampola fractional derivative. Available at (2017). | arXiv | MR

[26] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). | MR | JFM

[27] Salamooni, A. Y. A., Pawar, D. D.: Hilfer-Hadamard-type fractional differential equation with Cauchy-type problem. Available at , 18 pages. | arXiv

[28] Wang, J., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266 (2015), 850-859. | DOI | MR

Cité par Sources :