A relational semantics for the logic of bounded lattices
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 225-240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
DOI : 10.21136/MB.2018.0126-17
Classification : 03G10, 03G27, 06B15
Keywords: logic of bounded lattice; polarity; two-sorted frame; relational semantics
@article{10_21136_MB_2018_0126_17,
     author = {Gonz\'alez, Luciano J.},
     title = {A relational semantics for the logic of bounded lattices},
     journal = {Mathematica Bohemica},
     pages = {225--240},
     year = {2019},
     volume = {144},
     number = {3},
     doi = {10.21136/MB.2018.0126-17},
     mrnumber = {3985854},
     zbl = {07088848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/}
}
TY  - JOUR
AU  - González, Luciano J.
TI  - A relational semantics for the logic of bounded lattices
JO  - Mathematica Bohemica
PY  - 2019
SP  - 225
EP  - 240
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/
DO  - 10.21136/MB.2018.0126-17
LA  - en
ID  - 10_21136_MB_2018_0126_17
ER  - 
%0 Journal Article
%A González, Luciano J.
%T A relational semantics for the logic of bounded lattices
%J Mathematica Bohemica
%D 2019
%P 225-240
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/
%R 10.21136/MB.2018.0126-17
%G en
%F 10_21136_MB_2018_0126_17
González, Luciano J. A relational semantics for the logic of bounded lattices. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 225-240. doi: 10.21136/MB.2018.0126-17

[1] Allwein, G., Dunn, J. M.: Kripke models for linear logic. J. Symb. Log. 58 (1993), 514-545. | DOI | MR | JFM

[2] Bimbó, K., Dunn, J. M.: Four-valued logic. Notre Dame J. Formal Logic 42 (2001), 171-192. | DOI | MR | JFM

[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002). | DOI | MR | JFM

[4] Dunn, J. M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symb. Log. 70 (2005), 713-740. | DOI | MR | JFM

[5] Font, J. M.: Abstract Agebraic Logic. An Introductory Textbook. Studies in Logic 60. Mathematical Logic and Foundations. College Publications, London (2016). | MR | JFM

[6] Font, J. M., Jansana, R.: A General Algebraic Semantics For Sentential Logics. Lecture Notes in Logic 7. Springer, Berlin (1996). | DOI | MR | JFM

[7] Font, J. M., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Stud. Log. 74 (2003), 13-97. | DOI | MR | JFM

[8] Gehrke, M.: Generalized Kripke frames. Stud. Log. 84 (2006), 241-275. | DOI | MR | JFM

[9] Gehrke, M., Jansana, R., Palmigiano, A.: $\Delta_1$-completions of a poset. Order 30 (2013), 39-64. | DOI | MR | JFM

[10] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Jap. 40 (1994), 207-215. | MR | JFM

[11] Gehrke, M., Jónsson, B.: Monotone bounded distributive lattice expansions. Math. Jap. 52 (2000), 197-213. | MR | JFM

[12] Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Math. Scand. 94 (2004), 13-45. | DOI | MR | JFM

[13] Hartung, G.: A topological representation of lattices. Algebra Univers. 29 (1992), 273-299. | DOI | MR | JFM

[14] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). | MR | JFM

[15] Jónsson, B., Tarski, A.: Boolean algebras with operators I. Am. J. Math. 73 (1951), 891-939. | DOI | MR | JFM

[16] Jónsson, B., Tarski, A.: Boolean algebras with operators II. Am. J. Math. 74 (1952), 127-162. | DOI | MR | JFM

[17] Kamide, N.: Kripke semantics for modal substructural logics. J. Logic Lang. Inf. 11 (2002), 453-470. | DOI | MR | JFM

[18] MacCaull, W.: Relational semantics and a relational proof system for full Lambek calculus. J. Symb. Log. 63 (1998), 623-637. | DOI | MR | JFM

[19] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions I: A topological construction of canonical extensions. Algebra Univers. 71 (2014), 109-126. | DOI | MR | JFM

[20] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions II: Lattice expansions with quasioperators. Algebra Univers. 71 (2014), 221-234. | DOI | MR | JFM

[21] Rebagliato, J., Verdú, V.: On the algebraization of some Gentzen systems. Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 18 (1993), 319-338. | MR | JFM

[22] Rebagliato, J., Verdú, V.: Algebraizable Gentzen systems and the deduction theorem for Gentzen systems. Mathematics Preprint. Series 175 University of Barcelona (1995).

[23] Urquhart, A.: A topological representation theory for lattices. Algebra Univers. 8 (1978), 45-58. | DOI | MR | JFM

Cité par Sources :