A relational semantics for the logic of bounded lattices
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 225-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
DOI : 10.21136/MB.2018.0126-17
Classification : 03G10, 03G27, 06B15
Keywords: logic of bounded lattice; polarity; two-sorted frame; relational semantics
@article{10_21136_MB_2018_0126_17,
     author = {Gonz\'alez, Luciano J.},
     title = {A relational semantics for the logic of bounded lattices},
     journal = {Mathematica Bohemica},
     pages = {225--240},
     publisher = {mathdoc},
     volume = {144},
     number = {3},
     year = {2019},
     doi = {10.21136/MB.2018.0126-17},
     mrnumber = {3985854},
     zbl = {07088848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/}
}
TY  - JOUR
AU  - González, Luciano J.
TI  - A relational semantics for the logic of bounded lattices
JO  - Mathematica Bohemica
PY  - 2019
SP  - 225
EP  - 240
VL  - 144
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/
DO  - 10.21136/MB.2018.0126-17
LA  - en
ID  - 10_21136_MB_2018_0126_17
ER  - 
%0 Journal Article
%A González, Luciano J.
%T A relational semantics for the logic of bounded lattices
%J Mathematica Bohemica
%D 2019
%P 225-240
%V 144
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/
%R 10.21136/MB.2018.0126-17
%G en
%F 10_21136_MB_2018_0126_17
González, Luciano J. A relational semantics for the logic of bounded lattices. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 225-240. doi : 10.21136/MB.2018.0126-17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0126-17/

Cité par Sources :