Inverse topology in MV-algebras
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 273-285
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely ${\rm Min}(A)$, with the inverse topology is a compact space, Hausdorff, $T_{0}$-space and $T_{1}$-space. \endgraf Furthermore, we prove that the spectral topology on ${\rm Min}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on ${\rm Min}(A)$ is finer than the inverse topology on ${\rm Min}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra.
We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely ${\rm Min}(A)$, with the inverse topology is a compact space, Hausdorff, $T_{0}$-space and $T_{1}$-space. \endgraf Furthermore, we prove that the spectral topology on ${\rm Min}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on ${\rm Min}(A)$ is finer than the inverse topology on ${\rm Min}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra.
DOI : 10.21136/MB.2018.0117-17
Classification : 06D35, 06F30
Keywords: minimal prime; spectral topology; inverse topology; congruence
@article{10_21136_MB_2018_0117_17,
     author = {Forouzesh, Fereshteh and Sajadian, Farhad and Bedrood, Mahta},
     title = {Inverse topology in {MV-algebras}},
     journal = {Mathematica Bohemica},
     pages = {273--285},
     year = {2019},
     volume = {144},
     number = {3},
     doi = {10.21136/MB.2018.0117-17},
     mrnumber = {3985857},
     zbl = {07088851},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0117-17/}
}
TY  - JOUR
AU  - Forouzesh, Fereshteh
AU  - Sajadian, Farhad
AU  - Bedrood, Mahta
TI  - Inverse topology in MV-algebras
JO  - Mathematica Bohemica
PY  - 2019
SP  - 273
EP  - 285
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0117-17/
DO  - 10.21136/MB.2018.0117-17
LA  - en
ID  - 10_21136_MB_2018_0117_17
ER  - 
%0 Journal Article
%A Forouzesh, Fereshteh
%A Sajadian, Farhad
%A Bedrood, Mahta
%T Inverse topology in MV-algebras
%J Mathematica Bohemica
%D 2019
%P 273-285
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0117-17/
%R 10.21136/MB.2018.0117-17
%G en
%F 10_21136_MB_2018_0117_17
Forouzesh, Fereshteh; Sajadian, Farhad; Bedrood, Mahta. Inverse topology in MV-algebras. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 273-285. doi: 10.21136/MB.2018.0117-17

[1] Belluce, L. P., Nola, A. Di, Sessa, S.: The prime spectrum of an MV-algebra. Math. Log. Q. 40 (1994), 331-346. | DOI | MR | JFM

[2] Bhattacharjee, P., Drees, K. M., McGovern, W. W.: Extensions of commutative rings. Topology Appl. 158 (2011), 1802-1814. | DOI | MR | JFM

[3] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88 (1958), 467-490. | DOI | MR | JFM

[4] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). | DOI | MR | JFM

[5] Eslami, E.: The prime spectrum on BL-algebras and MV-algebras. Siminar Algebra Tarbiat Moallem University (2009), 58-61 Persian.

[6] Forouzesh, F., Eslami, E., Saeid, A. Borumand: Spectral topology on MV-modules. New Math. Nat. Comput. 11 (2015), 13-33. | DOI | MR | JFM

[7] Munkres, J. R.: Topology. Prentice Hall, Upper Saddle River (2000). | MR | JFM

[8] Piciu, D.: Algebras of Fuzzy Logic. Editura Universitaria din Craiova, Craiova (2007), Romanian.

Cité par Sources :