Keywords: Hake-variational McShane integral; variational McShane integral; Banach space; $m$-dimensional Euclidean space
@article{10_21136_MB_2018_0114_17,
author = {Kaliaj, Sokol Bush},
title = {New extension of the variational {McShane} integral of vector-valued functions},
journal = {Mathematica Bohemica},
pages = {137--148},
year = {2019},
volume = {144},
number = {2},
doi = {10.21136/MB.2018.0114-17},
mrnumber = {3974183},
zbl = {07088841},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/}
}
TY - JOUR AU - Kaliaj, Sokol Bush TI - New extension of the variational McShane integral of vector-valued functions JO - Mathematica Bohemica PY - 2019 SP - 137 EP - 148 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/ DO - 10.21136/MB.2018.0114-17 LA - en ID - 10_21136_MB_2018_0114_17 ER -
%0 Journal Article %A Kaliaj, Sokol Bush %T New extension of the variational McShane integral of vector-valued functions %J Mathematica Bohemica %D 2019 %P 137-148 %V 144 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/ %R 10.21136/MB.2018.0114-17 %G en %F 10_21136_MB_2018_0114_17
Kaliaj, Sokol Bush. New extension of the variational McShane integral of vector-valued functions. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 137-148. doi: 10.21136/MB.2018.0114-17
[1] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb{R}^{m}$. Czech. Math. J. 51 (2001), 95-110. | DOI | MR | JFM
[2] Piazza, L. Di, Musial, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. | DOI | MR | JFM
[3] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). | MR | JFM
[4] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM
[5] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. | DOI | MR | JFM
[6] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | JFM
[7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[8] Kaliaj, S. B.: The new extensions of the Henstock-Kurzweil and the McShane integrals of vector-valued functions. Mediterr. J. Math. 15 (2018), Article ID 22, 16 pages. | DOI | MR | JFM
[9] Kaliaj, S. B.: Some remarks about descriptive characterizations of the strong McShane integral. (to appear) in Math. Bohem.
[10] Kurzweil, J., Schwabik, Š.: On the McShane integrability of Banach space-valued functions. Real Anal. Exchange 29 (2003-2004), 763-780. | DOI | MR | JFM
[11] McShane, E. J.: Unifed Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (1983). | MR | JFM
[12] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). | DOI | MR | JFM
[13] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM
[14] Skvortsov, V. A., Solodov, A. P.: A variational integral for Banach-valued functions. Real Anal. Exch. 24 (1999), 799-805. | DOI | MR | JFM
[15] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 93 (1991), 96 pages. | DOI | MR | JFM
[16] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. | DOI | MR | JFM
[17] Wu, C., Xiaobo, Y.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. | MR | JFM
Cité par Sources :