New extension of the variational McShane integral of vector-valued functions
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 137-148
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb {R}^{m}$. It is a "natural" extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb {R}^{m}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative.
We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb {R}^{m}$. It is a "natural" extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb {R}^{m}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative.
DOI : 10.21136/MB.2018.0114-17
Classification : 28B05, 46B25, 46G10
Keywords: Hake-variational McShane integral; variational McShane integral; Banach space; $m$-dimensional Euclidean space
@article{10_21136_MB_2018_0114_17,
     author = {Kaliaj, Sokol Bush},
     title = {New extension of the variational {McShane} integral of vector-valued functions},
     journal = {Mathematica Bohemica},
     pages = {137--148},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0114-17},
     mrnumber = {3974183},
     zbl = {07088841},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/}
}
TY  - JOUR
AU  - Kaliaj, Sokol Bush
TI  - New extension of the variational McShane integral of vector-valued functions
JO  - Mathematica Bohemica
PY  - 2019
SP  - 137
EP  - 148
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/
DO  - 10.21136/MB.2018.0114-17
LA  - en
ID  - 10_21136_MB_2018_0114_17
ER  - 
%0 Journal Article
%A Kaliaj, Sokol Bush
%T New extension of the variational McShane integral of vector-valued functions
%J Mathematica Bohemica
%D 2019
%P 137-148
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0114-17/
%R 10.21136/MB.2018.0114-17
%G en
%F 10_21136_MB_2018_0114_17
Kaliaj, Sokol Bush. New extension of the variational McShane integral of vector-valued functions. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 137-148. doi: 10.21136/MB.2018.0114-17

[1] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb{R}^{m}$. Czech. Math. J. 51 (2001), 95-110. | DOI | MR | JFM

[2] Piazza, L. Di, Musial, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. | DOI | MR | JFM

[3] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). | MR | JFM

[4] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM

[5] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. | DOI | MR | JFM

[6] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | JFM

[7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM

[8] Kaliaj, S. B.: The new extensions of the Henstock-Kurzweil and the McShane integrals of vector-valued functions. Mediterr. J. Math. 15 (2018), Article ID 22, 16 pages. | DOI | MR | JFM

[9] Kaliaj, S. B.: Some remarks about descriptive characterizations of the strong McShane integral. (to appear) in Math. Bohem.

[10] Kurzweil, J., Schwabik, Š.: On the McShane integrability of Banach space-valued functions. Real Anal. Exchange 29 (2003-2004), 763-780. | DOI | MR | JFM

[11] McShane, E. J.: Unifed Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (1983). | MR | JFM

[12] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). | DOI | MR | JFM

[13] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM

[14] Skvortsov, V. A., Solodov, A. P.: A variational integral for Banach-valued functions. Real Anal. Exch. 24 (1999), 799-805. | DOI | MR | JFM

[15] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 93 (1991), 96 pages. | DOI | MR | JFM

[16] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. | DOI | MR | JFM

[17] Wu, C., Xiaobo, Y.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. | MR | JFM

Cité par Sources :