The symmetry reduction of variational integrals, complement
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 431-439
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some open problems appearing in the primary article on the symmetry reduction are solved. A new and quite simple coordinate-free definition of Poincaré-Cartan forms and the substance of divergence symmetries (quasisymmetries) are clarified. The unbeliavable uniqueness and therefore the global existence of Poincaré-Cartan forms without any uncertain multipliers for the Lagrange variational problems are worth extra mentioning.
Some open problems appearing in the primary article on the symmetry reduction are solved. A new and quite simple coordinate-free definition of Poincaré-Cartan forms and the substance of divergence symmetries (quasisymmetries) are clarified. The unbeliavable uniqueness and therefore the global existence of Poincaré-Cartan forms without any uncertain multipliers for the Lagrange variational problems are worth extra mentioning.
DOI : 10.21136/MB.2018.0111-17
Classification : 49N99, 49S05, 70H03
Keywords: Lagrange variational problem; Poincaré-Cartan form; symmetry reduction
@article{10_21136_MB_2018_0111_17,
     author = {Chrastinov\'a, Veronika and Tryhuk, V\'aclav},
     title = {The symmetry reduction of variational integrals, complement},
     journal = {Mathematica Bohemica},
     pages = {431--439},
     year = {2018},
     volume = {143},
     number = {4},
     doi = {10.21136/MB.2018.0111-17},
     mrnumber = {3895266},
     zbl = {06997376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/}
}
TY  - JOUR
AU  - Chrastinová, Veronika
AU  - Tryhuk, Václav
TI  - The symmetry reduction of variational integrals, complement
JO  - Mathematica Bohemica
PY  - 2018
SP  - 431
EP  - 439
VL  - 143
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/
DO  - 10.21136/MB.2018.0111-17
LA  - en
ID  - 10_21136_MB_2018_0111_17
ER  - 
%0 Journal Article
%A Chrastinová, Veronika
%A Tryhuk, Václav
%T The symmetry reduction of variational integrals, complement
%J Mathematica Bohemica
%D 2018
%P 431-439
%V 143
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/
%R 10.21136/MB.2018.0111-17
%G en
%F 10_21136_MB_2018_0111_17
Chrastinová, Veronika; Tryhuk, Václav. The symmetry reduction of variational integrals, complement. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 431-439. doi: 10.21136/MB.2018.0111-17

[1] Bažaňski, S. L.: The Jacobi variational principle revisited. Classical and Quantum Integrability Banach Cent. Publ. 59. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2003), 99-111 J. Grabowski et al. | DOI | MR | JFM

[2] Chrastinová, V.: The Intransitive Lie Group Actions with Variable Structure Constants. Mathematics, Information Technologies and Applied Sciences 2017 University of Defence, Brno (2017), 141-146 J. Baštinec et al.

[3] Hermann, R.: Differential form methods in the theory of variational systems and Lagrangian field theories. Acta Appl. Math. 12 (1988), 35-78. | DOI | MR | JFM

[4] Langerock, B., Cantrijn, F., Vankerschaver, J.: Routhian reduction for quasi-invariant Lagrangians. J. Math. Phys. 51 (2010), Paper No. 022902, 20 pages. | DOI | MR | JFM

[5] Olver, P. J., Pohjanpelto, J., Valiquette, F.: On the structure of Lie pseudo-groups. SIGMA, Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper No. 077, 14 pages. | DOI | MR | JFM

[6] Tryhuk, V., Chrastinová, V.: On the internal approach to differential equations 1. The involutiveness and standard basis. Math. Slovaca 66 (2016), 999-1018. | DOI | MR | JFM

[7] Tryhuk, V., Chrastinová, V.: The symmetry reduction of variational integrals. Math. Bohemica 143 (2018), 291-328. | DOI | MR | JFM

Cité par Sources :