Keywords: Lagrange variational problem; Poincaré-Cartan form; symmetry reduction
@article{10_21136_MB_2018_0111_17,
author = {Chrastinov\'a, Veronika and Tryhuk, V\'aclav},
title = {The symmetry reduction of variational integrals, complement},
journal = {Mathematica Bohemica},
pages = {431--439},
year = {2018},
volume = {143},
number = {4},
doi = {10.21136/MB.2018.0111-17},
mrnumber = {3895266},
zbl = {06997376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/}
}
TY - JOUR AU - Chrastinová, Veronika AU - Tryhuk, Václav TI - The symmetry reduction of variational integrals, complement JO - Mathematica Bohemica PY - 2018 SP - 431 EP - 439 VL - 143 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/ DO - 10.21136/MB.2018.0111-17 LA - en ID - 10_21136_MB_2018_0111_17 ER -
%0 Journal Article %A Chrastinová, Veronika %A Tryhuk, Václav %T The symmetry reduction of variational integrals, complement %J Mathematica Bohemica %D 2018 %P 431-439 %V 143 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0111-17/ %R 10.21136/MB.2018.0111-17 %G en %F 10_21136_MB_2018_0111_17
Chrastinová, Veronika; Tryhuk, Václav. The symmetry reduction of variational integrals, complement. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 431-439. doi: 10.21136/MB.2018.0111-17
[1] Bažaňski, S. L.: The Jacobi variational principle revisited. Classical and Quantum Integrability Banach Cent. Publ. 59. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2003), 99-111 J. Grabowski et al. | DOI | MR | JFM
[2] Chrastinová, V.: The Intransitive Lie Group Actions with Variable Structure Constants. Mathematics, Information Technologies and Applied Sciences 2017 University of Defence, Brno (2017), 141-146 J. Baštinec et al.
[3] Hermann, R.: Differential form methods in the theory of variational systems and Lagrangian field theories. Acta Appl. Math. 12 (1988), 35-78. | DOI | MR | JFM
[4] Langerock, B., Cantrijn, F., Vankerschaver, J.: Routhian reduction for quasi-invariant Lagrangians. J. Math. Phys. 51 (2010), Paper No. 022902, 20 pages. | DOI | MR | JFM
[5] Olver, P. J., Pohjanpelto, J., Valiquette, F.: On the structure of Lie pseudo-groups. SIGMA, Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper No. 077, 14 pages. | DOI | MR | JFM
[6] Tryhuk, V., Chrastinová, V.: On the internal approach to differential equations 1. The involutiveness and standard basis. Math. Slovaca 66 (2016), 999-1018. | DOI | MR | JFM
[7] Tryhuk, V., Chrastinová, V.: The symmetry reduction of variational integrals. Math. Bohemica 143 (2018), 291-328. | DOI | MR | JFM
Cité par Sources :